Home
Class 8
MATHS
Evaluate (x + 2)/((x + 1)(2x+ 3)) - (2...

Evaluate
`(x + 2)/((x + 1)(2x+ 3)) - (2x + 3)/((x + 1)(x + 2)) + (3x + 5)/((2x + 3)(x + 2))`

A

`2x`

B

`-1`

C

`0`

D

`x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{x + 2}{(x + 1)(2x + 3)} - \frac{2x + 3}{(x + 1)(x + 2)} + \frac{3x + 5}{(2x + 3)(x + 2)}, \] we will follow these steps: ### Step 1: Identify the Least Common Multiple (LCM) The denominators of the fractions are: 1. \((x + 1)(2x + 3)\) 2. \((x + 1)(x + 2)\) 3. \((2x + 3)(x + 2)\) To find the LCM, we take the highest power of each factor present in the denominators: - From \((x + 1)\), we take \(x + 1\) - From \((2x + 3)\), we take \(2x + 3\) - From \((x + 2)\), we take \(x + 2\) Thus, the LCM is: \[ (x + 1)(2x + 3)(x + 2) \] ### Step 2: Rewrite Each Fraction with the Common Denominator Next, we rewrite each fraction to have the common denominator: 1. For the first fraction: \[ \frac{x + 2}{(x + 1)(2x + 3)} \cdot \frac{x + 2}{x + 2} = \frac{(x + 2)^2}{(x + 1)(2x + 3)(x + 2)} \] 2. For the second fraction: \[ \frac{2x + 3}{(x + 1)(x + 2)} \cdot \frac{(2x + 3)}{(2x + 3)} = \frac{(2x + 3)^2}{(x + 1)(2x + 3)(x + 2)} \] 3. For the third fraction: \[ \frac{3x + 5}{(2x + 3)(x + 2)} \cdot \frac{(x + 1)}{(x + 1)} = \frac{(3x + 5)(x + 1)}{(x + 1)(2x + 3)(x + 2)} \] ### Step 3: Combine the Fractions Now we can combine the fractions: \[ \frac{(x + 2)^2 - (2x + 3)^2 + (3x + 5)(x + 1)}{(x + 1)(2x + 3)(x + 2)} \] ### Step 4: Simplify the Numerator Let's simplify the numerator: 1. Expand \((x + 2)^2\): \[ (x + 2)^2 = x^2 + 4x + 4 \] 2. Expand \((2x + 3)^2\): \[ (2x + 3)^2 = 4x^2 + 12x + 9 \] 3. Expand \((3x + 5)(x + 1)\): \[ (3x + 5)(x + 1) = 3x^2 + 3x + 5x + 5 = 3x^2 + 8x + 5 \] Now substitute these expansions back into the numerator: \[ x^2 + 4x + 4 - (4x^2 + 12x + 9) + (3x^2 + 8x + 5) \] Combine like terms: \[ (x^2 - 4x^2 + 3x^2) + (4x - 12x + 8x) + (4 - 9 + 5) = 0x^2 + 0x + 0 = 0 \] ### Step 5: Final Result The numerator simplifies to \(0\), so the entire expression becomes: \[ \frac{0}{(x + 1)(2x + 3)(x + 2)} = 0 \] Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • HCF AND LCM OF POLYNOMIALS AND RATIONAL EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank |20 Videos
  • HCF AND LCM

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-3|10 Videos
  • LINEAR EQUATIONS IN ONE VARIABLE (REVISION)

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

2 ((2x-1) / (x + 3))-3 ((x + 3) / (2x-1)) = 5

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

Evaluate int(x^(2)+2x-1)/(2x^(3)+3x^(2)-2x)dx

(x+3)/(2x+3)=(x+1)/(3x+2)

Evaluate: (i) int(x^(2)+x+5)/(3x+2)dx (ii) int(2x+3)/((x-1)^(2))dx

(i) (x ^ (3) + 2x ^ (2) + 3x) -: 2x (ii) (10x-25) - :( 2x-5) (iii) (x (x + 1) (x + 2 ) (x + 3)) - :( x (x + 1))

lim_ (x rarr oo) ((2x-3) ^ (2) (3x + 2) ^ (3)) / ((2x + 1) ^ (5))