Home
Class 8
MATHS
If (x+y): (x-y)= 4:1, then find the rati...

If (x+y): (x-y)= 4:1, then find the ratio `(x^(2)+y^(2)):(x^(2)-y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \((x^2 + y^2) : (x^2 - y^2)\) given that \((x + y) : (x - y) = 4 : 1\). ### Step-by-Step Solution: 1. **Set up the ratio**: \[ \frac{x + y}{x - y} = \frac{4}{1} \] 2. **Cross-multiply to eliminate the fraction**: \[ x + y = 4(x - y) \] 3. **Expand the right side**: \[ x + y = 4x - 4y \] 4. **Rearrange the equation**: \[ y + 4y = 4x - x \] \[ 5y = 3x \] 5. **Express \(x\) in terms of \(y\)**: \[ \frac{x}{y} = \frac{5}{3} \quad \Rightarrow \quad x = \frac{5}{3}y \] 6. **Substitute \(x\) in the expression \(x^2 + y^2\)**: \[ x^2 + y^2 = \left(\frac{5}{3}y\right)^2 + y^2 = \frac{25}{9}y^2 + y^2 \] \[ = \frac{25}{9}y^2 + \frac{9}{9}y^2 = \frac{34}{9}y^2 \] 7. **Substitute \(x\) in the expression \(x^2 - y^2\)**: \[ x^2 - y^2 = \left(\frac{5}{3}y\right)^2 - y^2 = \frac{25}{9}y^2 - y^2 \] \[ = \frac{25}{9}y^2 - \frac{9}{9}y^2 = \frac{16}{9}y^2 \] 8. **Now, find the ratio \((x^2 + y^2) : (x^2 - y^2)\)**: \[ \frac{x^2 + y^2}{x^2 - y^2} = \frac{\frac{34}{9}y^2}{\frac{16}{9}y^2} \] 9. **Cancel \(y^2\) and simplify**: \[ = \frac{34}{16} = \frac{17}{8} \] 10. **Final answer**: The ratio \((x^2 + y^2) : (x^2 - y^2) = 17 : 8\).
Promotional Banner

Topper's Solved these Questions

  • RATIO AND PROPORTION

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-15|30 Videos
  • RATIO AND PROPORTION

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESEMENT SHEET - 15|10 Videos
  • QUADRATIC EQUATIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • SIMPLE INTEREST

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-18|5 Videos

Similar Questions

Explore conceptually related problems

If (3x-y):x(4x+y)=5:12 then find (x^(2)+y^(2)):(x+y^(2))

If (x-1,y+4)=(1,2) then find x & y

If x:y=8:9, find the ratio (7x-4y):3x+2y

If ((2x-y)/(x+2y))=(1)/(2), then find the value of ((3x-y)/(3x+y))

If (x+y, x-y)=(1,2), find x and y.

If x^2+y^2+1/y^2+1/y^2=4 then find the value of x^2+y^2

If (x+y,x-y)=(1,2) find x and y