Home
Class 8
MATHS
Evaluate : 2 tan ^(2) 45^(@) + cos ^(2)...

Evaluate : ` 2 tan ^(2) 45^(@) + cos ^(2) 30^(@) - sin ^(2) 60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ \), we will follow these steps: ### Step 1: Evaluate \( \tan^2 45^\circ \) We know that: \[ \tan 45^\circ = 1 \] Thus, \[ \tan^2 45^\circ = 1^2 = 1 \] ### Step 2: Calculate \( 2 \tan^2 45^\circ \) Now, substituting the value from Step 1: \[ 2 \tan^2 45^\circ = 2 \times 1 = 2 \] ### Step 3: Evaluate \( \cos^2 30^\circ \) We know that: \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] Thus, \[ \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] ### Step 4: Evaluate \( \sin^2 60^\circ \) We know that: \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \] Thus, \[ \sin^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] ### Step 5: Substitute values into the expression Now we substitute the values we calculated into the original expression: \[ 2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ = 2 + \frac{3}{4} - \frac{3}{4} \] ### Step 6: Simplify the expression Since \( \frac{3}{4} - \frac{3}{4} = 0 \), we have: \[ 2 + 0 = 2 \] ### Final Answer Thus, the value of the expression \( 2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 33 |25 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • VOLUME AND SURFACE AREA

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 5|20 Videos

Similar Questions

Explore conceptually related problems

2tan ^ (2) 45 ^ (@) + cos ^ (2) 30 ^ (@) - sin ^ (2) 60 ^ (@)

2tan ^ (2) 45 ^ (@) - + cos ^ (2) 30 ^ (@) - sin ^ (2) 60 ^ (@) is

Evaluate : 2 tan^(2) 60^(@) +cos^(2) 30^(@) +sin^(2)60 .

Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec ^(2) 30^(@) - tan ^(2) 45^(@))/( sin ^(2) 30^(@) + cos ^(2) 30^(@))

Prove that : (4)/(3) tan ^(2) 30^(@) + sin ^(2) 60^(@) - 3 cos ^(2) 60^(@) + (3)/(4) tan^(2) 60^(@) - 2 tan^(2) 45^(@) = (25)/(36)

What is the value of sin^(3) 60^(@) cot 30^(@) - 2 sec^(2) 45^(@) + 3 cos 60^(@) tan 45^(@) - tan^(2) 60^(@) ?