Home
Class 8
MATHS
Prove that : (4)/(3) tan ^(2) 30^(@) + s...

Prove that : `(4)/(3) tan ^(2) 30^(@) + sin ^(2) 60^(@) - 3 cos ^(2) 60^(@) + (3)/(4) tan^(2) 60^(@) - 2 tan^(2) 45^(@) = (25)/(36)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \frac{4}{3} \tan^2 30^\circ + \sin^2 60^\circ - 3 \cos^2 60^\circ + \frac{3}{4} \tan^2 60^\circ - 2 \tan^2 45^\circ = \frac{25}{36} \] we will substitute the values of the trigonometric functions for the angles involved. ### Step 1: Substitute the values of trigonometric functions We know the following values: - \(\tan 30^\circ = \frac{1}{\sqrt{3}}\) - \(\sin 60^\circ = \frac{\sqrt{3}}{2}\) - \(\cos 60^\circ = \frac{1}{2}\) - \(\tan 60^\circ = \sqrt{3}\) - \(\tan 45^\circ = 1\) Now we will substitute these values into the left-hand side (LHS) of the equation. \[ \frac{4}{3} \left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - 3 \left(\frac{1}{2}\right)^2 + \frac{3}{4} (\sqrt{3})^2 - 2 (1)^2 \] ### Step 2: Calculate each term Now we will calculate each term step by step. 1. Calculate \(\tan^2 30^\circ\): \[ \tan^2 30^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] So, \[ \frac{4}{3} \tan^2 30^\circ = \frac{4}{3} \cdot \frac{1}{3} = \frac{4}{9} \] 2. Calculate \(\sin^2 60^\circ\): \[ \sin^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] 3. Calculate \(\cos^2 60^\circ\): \[ \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] So, \[ -3 \cos^2 60^\circ = -3 \cdot \frac{1}{4} = -\frac{3}{4} \] 4. Calculate \(\tan^2 60^\circ\): \[ \tan^2 60^\circ = (\sqrt{3})^2 = 3 \] So, \[ \frac{3}{4} \tan^2 60^\circ = \frac{3}{4} \cdot 3 = \frac{9}{4} \] 5. Calculate \(\tan^2 45^\circ\): \[ \tan^2 45^\circ = 1^2 = 1 \] So, \[ -2 \tan^2 45^\circ = -2 \cdot 1 = -2 \] ### Step 3: Combine all the terms Now we can combine all the calculated terms: \[ \frac{4}{9} + \frac{3}{4} - \frac{3}{4} + \frac{9}{4} - 2 \] Notice that \(\frac{3}{4} - \frac{3}{4} = 0\), so we can simplify: \[ \frac{4}{9} + \frac{9}{4} - 2 \] ### Step 4: Find a common denominator The common denominator for \(9\) and \(4\) is \(36\). We will convert each term: 1. Convert \(\frac{4}{9}\): \[ \frac{4}{9} = \frac{4 \times 4}{9 \times 4} = \frac{16}{36} \] 2. Convert \(\frac{9}{4}\): \[ \frac{9}{4} = \frac{9 \times 9}{4 \times 9} = \frac{81}{36} \] 3. Convert \(-2\): \[ -2 = -\frac{72}{36} \] ### Step 5: Combine the fractions Now we can combine: \[ \frac{16}{36} + \frac{81}{36} - \frac{72}{36} = \frac{16 + 81 - 72}{36} = \frac{25}{36} \] ### Conclusion Thus, we have shown that: \[ \frac{4}{3} \tan^2 30^\circ + \sin^2 60^\circ - 3 \cos^2 60^\circ + \frac{3}{4} \tan^2 60^\circ - 2 \tan^2 45^\circ = \frac{25}{36} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 33 |25 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • VOLUME AND SURFACE AREA

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 5|20 Videos

Similar Questions

Explore conceptually related problems

Find the value of, (4)/(3)cot^(2)30^(@)+3sin^(2)60^(@)-2" cosec"^(2)60^(@)-(3)/(4)tan^(2)30^(@) :

sin^(2) 60^(@) + 2 tan 45^(@) - cos^(2) 30^(@)

2sin ^ (2) (30 ^ (@)) - 3cos ^ (2) (45 ^ (@)) + tan ^ (2) (60 ^ (@))

2tan ^ (2) 45 ^ (@) + cos ^ (2) 30 ^ (@) - sin ^ (2) 60 ^ (@)

2tan ^ (2) 45 ^ (@) - + cos ^ (2) 30 ^ (@) - sin ^ (2) 60 ^ (@) is

4 (sin ^ (4) 60 ^ (@) + cos ^ (4) 30 ^ (@)) - 3 (tan ^ (2) 60 ^ (@) - tan ^ (2) 45 ^ (@)) + 5cos ^ (2) 45 ^ (@)

sin30 ^ (@) sin ^ (2) (60) ^ (@) + 3cos60 ^ (@) tan45 ^ (@) =

Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec ^(2) 30^(@) - tan ^(2) 45^(@))/( sin ^(2) 30^(@) + cos ^(2) 30^(@))