Home
Class 8
MATHS
Find the value of x if tan 3 x = sin 45...

Find the value of x if tan 3 x = sin `45^(@) cos 45^(@) + sin 30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan 3x = \sin 45^\circ \cos 45^\circ + \sin 30^\circ \), we can follow these steps: ### Step 1: Calculate \( \sin 45^\circ \) and \( \cos 45^\circ \) We know that: \[ \sin 45^\circ = \frac{1}{\sqrt{2}} \quad \text{and} \quad \cos 45^\circ = \frac{1}{\sqrt{2}} \] ### Step 2: Calculate \( \sin 30^\circ \) We also know that: \[ \sin 30^\circ = \frac{1}{2} \] ### Step 3: Substitute these values into the equation Now substitute the values into the equation: \[ \tan 3x = \sin 45^\circ \cos 45^\circ + \sin 30^\circ \] This becomes: \[ \tan 3x = \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}\right) + \frac{1}{2} \] ### Step 4: Simplify the right-hand side Calculating the product: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2} \] Now adding \( \frac{1}{2} \): \[ \tan 3x = \frac{1}{2} + \frac{1}{2} = 1 \] ### Step 5: Set \( \tan 3x \) equal to \( 1 \) We know that: \[ \tan 45^\circ = 1 \] Thus, we can write: \[ \tan 3x = \tan 45^\circ \] ### Step 6: Solve for \( 3x \) Since the tangents are equal, we can set their angles equal: \[ 3x = 45^\circ \] ### Step 7: Solve for \( x \) Now, divide both sides by 3: \[ x = \frac{45^\circ}{3} = 15^\circ \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{15^\circ} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 33 |25 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • VOLUME AND SURFACE AREA

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 5|20 Videos

Similar Questions

Explore conceptually related problems

If tan x = sin45^(@) cos 45^(@) + sin 30^(@) then x is equal to

If tan x = sin 45^@. cos 45^@ + sin30^@ , then value of x is - यदि tan x = sin 45^@. cos 45^@ + sin30^@ हो, तो xका मान क्या होगा ?

What is the value of theta in the exprssion, tan 3theta = sin 45^(@) cos 45^(@) + sin 30^(@) ?

Find the value of, 5 sin 30^(@)+ 3 tan 45^(@) ,

Find the value of : (i) sin 30^(@)+cos 60^(@) (ii) sin 0^(@)-cos 0^(@) (iii) tan 45^(@)- tan 37^(@) (iv) sin 390^(@) (v) cos 405^(@) (vi) tan 420^(@) (vii) sin 150^(@) (viii) cos 120^(@) (ix) tan 135^(@) (x) sin (330^(@)) (xi) cos 300^(@) (xii) sin (-30^(@)) (xiii) cos (-60^(@)) (xiv) tan (-45^(@)) (xv) sin (-150^(@))

Evaluate sin45^(@)+cos45^(@)

Value of sin45^@/cos45^@

Find the value of, 2 tan 45^(@)+cos 30^(@)-sin 60^(@) .

Find the value of sin ^2 30^@ +cos^@ 45^@ .

What is the value of (sin 60^(@))/( cos^(2) 45^(@) ) - 3 tan 30^(@) + 5 cos 90^(@)