Home
Class 8
MATHS
Show that (1)/( 1 + cos (90^(@) - theta)...

Show that `(1)/( 1 + cos (90^(@) - theta)) + (1)/(1 - cos (90^(@) - theta )) = 2 cosec ^(2) (90 ^(@) - theta )`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \[ \frac{1}{1 + \cos(90^\circ - \theta)} + \frac{1}{1 - \cos(90^\circ - \theta)} = 2 \csc^2(90^\circ - \theta) \] we will follow these steps: ### Step 1: Use the co-function identity We know that \[ \cos(90^\circ - \theta) = \sin(\theta) \] ### Step 2: Substitute the identity into the equation Substituting the identity into the left-hand side (LHS): \[ \frac{1}{1 + \sin(\theta)} + \frac{1}{1 - \sin(\theta)} \] ### Step 3: Find a common denominator The common denominator for the two fractions is \[ (1 + \sin(\theta))(1 - \sin(\theta)) = 1 - \sin^2(\theta) \] ### Step 4: Rewrite the fractions Now we rewrite the LHS with the common denominator: \[ \frac{(1 - \sin(\theta)) + (1 + \sin(\theta))}{(1 + \sin(\theta))(1 - \sin(\theta))} \] ### Step 5: Simplify the numerator The numerator simplifies to: \[ 1 - \sin(\theta) + 1 + \sin(\theta) = 2 \] So, we have: \[ \frac{2}{1 - \sin^2(\theta)} \] ### Step 6: Use the Pythagorean identity Using the Pythagorean identity \(1 - \sin^2(\theta) = \cos^2(\theta)\), we can rewrite the expression: \[ \frac{2}{\cos^2(\theta)} \] ### Step 7: Rewrite in terms of cosecant We know that \[ \frac{1}{\cos^2(\theta)} = \sec^2(\theta) \] Thus, we can write: \[ \frac{2}{\cos^2(\theta)} = 2 \sec^2(\theta) \] ### Step 8: Relate secant to cosecant Using the identity \(\sec^2(\theta) = \csc^2(90^\circ - \theta)\), we can rewrite the expression as: \[ 2 \sec^2(\theta) = 2 \csc^2(90^\circ - \theta) \] ### Conclusion Thus, we have shown that: \[ \frac{1}{1 + \cos(90^\circ - \theta)} + \frac{1}{1 - \cos(90^\circ - \theta)} = 2 \csc^2(90^\circ - \theta) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 33 |25 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • VOLUME AND SURFACE AREA

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 5|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate : sin theta cos theta - (sin theta cos (90^(@) - theta) cos theta)/( sec (90^(@) - theta)) - (cos theta sin (90^(@) - theta) sin theta)/( cosec (90^(@) - theta))

The value of sin^(2) (90^(@) - theta) [ 1 + cot ^(2) (90^(@) - theta)] is

tan^(2)(90^(@) - theta) - cosec^(2) theta =

What is the value of (1)/( sin^(4) (90 - theta)) + (1)/([cos ^(2) (90 - theta)] - 1) ?

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?

Prove that (cos theta cos(90^(@)-theta))/(cot(90^(@)-theta))=cos^(2)theta

((cos (90 ^ (@)) - theta) sin (90 ^ (@) - theta)) / (tan (90 ^ (@) - theta))

Prove that :(sin theta cos(90^(0)-theta)cos theta)/(sin(90^(0)-theta))+(cos theta sin(90^(0)-theta)sin theta)/(cos(90^(@)-theta))=1csc^(2)(90^(@)-theta)-tan^(2)theta=cos^(2)(90^(@)-theta)+cos^(2)theta