Home
Class 8
MATHS
The value of sin 0^(@) + cos 30^(@) - ta...

The value of sin `0^(@) + cos 30^(@) - tan 45^(@) + cosec 60^(@) + cot 90^(@) ` is equal to

A

`(5 sqrt(3) - 6)/(6)`

B

`(-6 + 7 sqrt(3))/(6)`

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin 0^\circ + \cos 30^\circ - \tan 45^\circ + \csc 60^\circ + \cot 90^\circ \), we will evaluate each trigonometric function step by step. ### Step 1: Evaluate \( \sin 0^\circ \) \[ \sin 0^\circ = 0 \] ### Step 2: Evaluate \( \cos 30^\circ \) \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] ### Step 3: Evaluate \( \tan 45^\circ \) \[ \tan 45^\circ = 1 \] ### Step 4: Evaluate \( \csc 60^\circ \) \[ \csc 60^\circ = \frac{1}{\sin 60^\circ} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] ### Step 5: Evaluate \( \cot 90^\circ \) \[ \cot 90^\circ = 0 \] ### Step 6: Substitute the values into the expression Now we substitute the values we found into the original expression: \[ 0 + \frac{\sqrt{3}}{2} - 1 + \frac{2}{\sqrt{3}} + 0 \] This simplifies to: \[ \frac{\sqrt{3}}{2} - 1 + \frac{2}{\sqrt{3}} \] ### Step 7: Combine the terms To combine the terms, we need a common denominator. The least common multiple of the denominators \(2\) and \(\sqrt{3}\) is \(2\sqrt{3}\). Rewriting each term with the common denominator: - The first term: \[ \frac{\sqrt{3}}{2} = \frac{\sqrt{3} \cdot \sqrt{3}}{2 \cdot \sqrt{3}} = \frac{3}{2\sqrt{3}} \] - The second term: \[ -1 = -\frac{2\sqrt{3}}{2\sqrt{3}} = -\frac{2\sqrt{3}}{2\sqrt{3}} \] - The third term: \[ \frac{2}{\sqrt{3}} = \frac{2 \cdot 2}{\sqrt{3} \cdot 2} = \frac{4}{2\sqrt{3}} \] Now we can combine: \[ \frac{3}{2\sqrt{3}} - \frac{2\sqrt{3}}{2\sqrt{3}} + \frac{4}{2\sqrt{3}} = \frac{3 - 2\sqrt{3} + 4}{2\sqrt{3}} = \frac{7 - 2\sqrt{3}}{2\sqrt{3}} \] ### Step 8: Rationalize the denominator To rationalize the denominator, multiply the numerator and the denominator by \(\sqrt{3}\): \[ \frac{(7 - 2\sqrt{3})\sqrt{3}}{2\sqrt{3} \cdot \sqrt{3}} = \frac{7\sqrt{3} - 6}{6} \] ### Final Answer Thus, the value of the expression is: \[ \frac{7\sqrt{3} - 6}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • VOLUME AND SURFACE AREA

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 5|20 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(2) 60^(@) + 2 tan 45^(@) - cos^(2) 30^(@) is :

The value of (sin 30^(@) - cos 60^(@) + tan 45^(@))/(cos 90^(@) + tan 45^(@) + sin 90^(@)) is

What is the value of sin^(3) 60^(@) cot 30^(@) - 2 sec^(2) 45^(@) + 3 cos 60^(@) tan 45^(@) - tan^(2) 60^(@) ?

The value of (sin^2 60^@+cos^2 30^@- sec 35^@.sin 55^@)/(sec 60^@+cosec 30^@) is equal to: (sin^2 60^@+cos^2 30^@- sec 35^@.sin 55^@)/(sec 60^@+cosec 30^@) का मान किसके बराबर है?

The value of cos^2 30^@ + sin^2 60^@ + tan^2 45^@ + sec^2 60^@ + cos 0^@ is

What is the value of (sin 60^(@))/( cos^(2) 45^(@) ) - 3 tan 30^(@) + 5 cos 90^(@)

The value of 2tan 45^(@)- sec 60^(@)+ cosec 30^(@) is

The value of (sin^2 30^@+ cos^2 60^@- sec 35^@.sin^2 55^@)/(sec60^@+ cosec 30^@) is equal to: (sin^2 30^@+ cos^2 60^@- sec 35^@.sin^2 55^@)/(sec60^@+ cosec 30^@) का मान क्या होगा ?

The value of (sin 30^@-cos 60^@+ cot^2 45^@)/(cos 30^@-tan 45^@+sin 90^@) is equal to : (sin 30^@-cos 60^@+ cot^2 45^@)/(cos 30^@-tan 45^@+sin 90^@) का मान किसके बराबर है?

S CHAND IIT JEE FOUNDATION-TRIGONOMETRICAL RATIOS OF STANDARD ANGLES -Question Bank - 33
  1. v20

    Text Solution

    |

  2. If x tan 30^(@) = (sin 30^(@) + cos 60^(@))/( tan 60^(@) + sin 60^(@)...

    Text Solution

    |

  3. The value of sin 0^(@) + cos 30^(@) - tan 45^(@) + cosec 60^(@) + cot ...

    Text Solution

    |

  4. If 2 sin ^(2) x + cos ^(2) 45^(@) = tan 45^(@) and x is an acute an...

    Text Solution

    |

  5. The value of a sin 0^(@) + b cos 90^(@)+ c tan 45^(@) is

    Text Solution

    |

  6. The value of (sin 30^(@) - cos 60^(@) + tan 45^(@))/(cos 90^(@) + tan ...

    Text Solution

    |

  7. The value of (1)/(2) sin ^(2) 90^(@) sin^(2) 30^(@) cos ^(2) 45^(@) + ...

    Text Solution

    |

  8. The value of (cos 0^(@) + sin 45^(@) + sin 30^(@)) (sin 90^(@) - cos 4...

    Text Solution

    |

  9. (tan 60^(@) - tan 30^(@))/(1 + tan 60^(@) tan 30^(@)) equal

    Text Solution

    |

  10. Find the value of x, if sin 2 x = sin 60^(@) cos 30^(@) - cos 60^(@...

    Text Solution

    |

  11. tan 26^(@) - cot 64^(@) equals

    Text Solution

    |

  12. (sin19^@)/(cos71^@)+(cos73^@)/(sin17^@)

    Text Solution

    |

  13. Consider the following equations : 1 . (cos 75^(@))/( sin 15 ^(@)) +...

    Text Solution

    |

  14. sin ^(2) 25^(@) + sin ^(2) 65^(@) is equal to

    Text Solution

    |

  15. If sin (30 ^(@) - theta) = cos (60 ^(@) + phi) , then

    Text Solution

    |

  16. The value of cot 15^(@) cot 16^(@) cot 17^(@) . . . . . cot 73^(@) cot...

    Text Solution

    |

  17. If sin theta = cos theta, then value of theta is :

    Text Solution

    |

  18. Value of cos^(2) 5^(@) + cos^(2) 10^(@) + cos^(2) 80^(@) + cos ^(2) 85...

    Text Solution

    |

  19. If sin 3 theta = cos (theta - 2^(@)) where 3 theta and (theta - 2^(@...

    Text Solution

    |

  20. If tan theta = 1 and sin phi = (1)/( sqrt(2)) , then the value of co...

    Text Solution

    |