Home
Class 8
MATHS
Consider the following equations : 1 ....

Consider the following equations :
1 . `(cos 75^(@))/( sin 15 ^(@)) + (sin 12^(@))/( cos 78^(@)) - (cosec 18 ^(@))/( sec 72^(@)) = 1 `
2 . `(tan 50^(@) + sec 50^(@))/( cot 40^(@) + cosec 40^(@)) + cos 40^(@) cosec 50^(@) = +2 `
3. `(sin 80^(@))/( cos 10^(@)) - sin 59^(@) sec 31^(@) = 0 `
Which of these statements given below is correct

A

1 only is correct

B

3 only is correct

C

All 1, 2 and 3 are correct

D

2 and 3 are correct

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations step by step, we will analyze each equation separately and verify their correctness. ### Equation 1: \[ \frac{\cos 75^\circ}{\sin 15^\circ} + \frac{\sin 12^\circ}{\cos 78^\circ} - \frac{\csc 18^\circ}{\sec 72^\circ} = 1 \] **Step 1: Simplify each term using trigonometric identities.** - We know that \(\sin 15^\circ = \cos 75^\circ\) (since \(\sin(90^\circ - x) = \cos x\)). - Also, \(\cos 78^\circ = \sin 12^\circ\) (again using the complementary angle identity). Thus, we can rewrite the equation as: \[ \frac{\cos 75^\circ}{\cos 75^\circ} + \frac{\sin 12^\circ}{\sin 12^\circ} - \frac{\csc 18^\circ}{\sec 72^\circ} = 1 \] **Step 2: Evaluate the simplified terms.** - The first term simplifies to \(1\). - The second term also simplifies to \(1\). - Now, we need to simplify \(\frac{\csc 18^\circ}{\sec 72^\circ}\): \[ \csc 18^\circ = \frac{1}{\sin 18^\circ}, \quad \sec 72^\circ = \frac{1}{\cos 72^\circ} \] Thus, \[ \frac{\csc 18^\circ}{\sec 72^\circ} = \frac{\cos 72^\circ}{\sin 18^\circ} \] Using the identity \(\sin 18^\circ = \cos 72^\circ\), we find: \[ \frac{\cos 72^\circ}{\sin 18^\circ} = 1 \] **Step 3: Substitute back into the equation.** \[ 1 + 1 - 1 = 1 \] Thus, the left-hand side equals the right-hand side, confirming that Equation 1 is correct. ### Equation 2: \[ \frac{\tan 50^\circ + \sec 50^\circ}{\cot 40^\circ + \csc 40^\circ} + \cos 40^\circ \csc 50^\circ = 2 \] **Step 1: Rewrite using identities.** - \(\tan 50^\circ = \frac{1}{\cot 40^\circ}\) and \(\sec 50^\circ = \frac{1}{\cos 50^\circ}\). - \(\cot 40^\circ = \frac{1}{\tan 40^\circ}\) and \(\csc 40^\circ = \frac{1}{\sin 40^\circ}\). Thus, we can rewrite the equation as: \[ \frac{\frac{1}{\cot 40^\circ} + \frac{1}{\cos 50^\circ}}{\cot 40^\circ + \csc 40^\circ} + \cos 40^\circ \csc 50^\circ = 2 \] **Step 2: Simplify the left-hand side.** Using the identity \(\cot 40^\circ + \csc 40^\circ = \frac{\sin 40^\circ + \cos 40^\circ}{\sin 40^\circ \cos 40^\circ}\), we can simplify further. After simplification, we find: \[ 1 + 1 = 2 \] Thus, Equation 2 is also correct. ### Equation 3: \[ \frac{\sin 80^\circ}{\cos 10^\circ} - \sin 59^\circ \sec 31^\circ = 0 \] **Step 1: Simplify using identities.** - We know \(\sin 80^\circ = \cos 10^\circ\). - Also, \(\sec 31^\circ = \frac{1}{\cos 31^\circ}\). Thus, we can rewrite the equation as: \[ \frac{\cos 10^\circ}{\cos 10^\circ} - \sin 59^\circ \cdot \frac{1}{\cos 31^\circ} = 0 \] **Step 2: Evaluate the terms.** This simplifies to: \[ 1 - \frac{\sin 59^\circ}{\cos 31^\circ} = 0 \] Using the identity \(\sin 59^\circ = \cos 31^\circ\), we find: \[ 1 - 1 = 0 \] Thus, Equation 3 is also correct. ### Conclusion: All three equations are correct. Therefore, the correct statements are: 1. Equation 1 is correct. 2. Equation 2 is correct. 3. Equation 3 is correct.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • VOLUME AND SURFACE AREA

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 5|20 Videos

Similar Questions

Explore conceptually related problems

Consider the following : 1. (cos 75^(@))/(sin 15^(@)) + (sin 12^(@))/(cos 78^(@)) - (cos 18^(@))/(sin 72^(@)) =1 2. (cos 35^(@))/(sin 55^(@)) - (sin 11^(@))/(9cos 79^(@)) + cos 28^(@) "cosec" 62^(@) =1 3. (sin 80^(@))/(cos 10^(@)) - sin 59^(@).sec 31^(@) =0 Which of the above are correct ?

(sec70^(@))/(csc20^(@))+(sin59^(@))/(cos31^(@))

Solve (sin40^(@))/(cos50^(@))+(csc40^(@))/(sec50^(@))

Evaluate the equation:- (sec 70^(@))/("cosec" 20^(@)) + (sin 59^(@))/(cos 31^(@)) .

sin 10^(@)+sin 20^(@) + sin 40 ^(@) + sin 50 = A) sin 15^(@) +sin 75^(@) B) cos 15^(@) + cos75^(@) C) sin 70^(@) + sin 80^(@) D) cos 70^(@) + cos 80^(@)

(sin70^(@))/(cos20^(@))+(csc20^(@))/(sec70^(@))-2cos70^(@)csc20^(@)=0

S CHAND IIT JEE FOUNDATION-TRIGONOMETRICAL RATIOS OF STANDARD ANGLES -Question Bank - 33
  1. The value of (sin 30^(@) - cos 60^(@) + tan 45^(@))/(cos 90^(@) + tan ...

    Text Solution

    |

  2. The value of (1)/(2) sin ^(2) 90^(@) sin^(2) 30^(@) cos ^(2) 45^(@) + ...

    Text Solution

    |

  3. The value of (cos 0^(@) + sin 45^(@) + sin 30^(@)) (sin 90^(@) - cos 4...

    Text Solution

    |

  4. (tan 60^(@) - tan 30^(@))/(1 + tan 60^(@) tan 30^(@)) equal

    Text Solution

    |

  5. Find the value of x, if sin 2 x = sin 60^(@) cos 30^(@) - cos 60^(@...

    Text Solution

    |

  6. tan 26^(@) - cot 64^(@) equals

    Text Solution

    |

  7. (sin19^@)/(cos71^@)+(cos73^@)/(sin17^@)

    Text Solution

    |

  8. Consider the following equations : 1 . (cos 75^(@))/( sin 15 ^(@)) +...

    Text Solution

    |

  9. sin ^(2) 25^(@) + sin ^(2) 65^(@) is equal to

    Text Solution

    |

  10. If sin (30 ^(@) - theta) = cos (60 ^(@) + phi) , then

    Text Solution

    |

  11. The value of cot 15^(@) cot 16^(@) cot 17^(@) . . . . . cot 73^(@) cot...

    Text Solution

    |

  12. If sin theta = cos theta, then value of theta is :

    Text Solution

    |

  13. Value of cos^(2) 5^(@) + cos^(2) 10^(@) + cos^(2) 80^(@) + cos ^(2) 85...

    Text Solution

    |

  14. If sin 3 theta = cos (theta - 2^(@)) where 3 theta and (theta - 2^(@...

    Text Solution

    |

  15. If tan theta = 1 and sin phi = (1)/( sqrt(2)) , then the value of co...

    Text Solution

    |

  16. If x cos 60^(@) + y cos 0^(@) = 3 and 4x sin 30^(@) - y cot 45^(@) =...

    Text Solution

    |

  17. Which one of the following is true ?

    Text Solution

    |

  18. If x + y = 90^(@) , then what is sqrt( cos x cosec y - cos x sin...

    Text Solution

    |

  19. If 0^(@) lt theta lt 90^(@) and cos^(2) theta - sin^(2) theta = (1)/(...

    Text Solution

    |

  20. The value of sin^(2) (90^(@) - theta) [ 1 + cot ^(2) (90^(@) - theta)...

    Text Solution

    |