Home
Class 8
MATHS
Without using trigonometric tables, find...

Without using trigonometric tables, find the value of : `(2)/(3) ((sec 56^(@))/( cosec 34^(@))) - 2 cos^(2) 20^(@) + (1)/(2) cot 28^(@) cot 35^(@) cot 45^(@) cot 62^(@) cot 55^(@) - 2 cos ^(2) 70^(@)`

A

`(4)/(5)`

B

`-(3)/(4)`

C

`-(5)/(6)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{2}{3} \left( \frac{\sec 56^\circ}{\csc 34^\circ} \right) - 2 \cos^2 20^\circ + \frac{1}{2} \cot 28^\circ \cot 35^\circ \cot 45^\circ \cot 62^\circ \cot 55^\circ - 2 \cos^2 70^\circ, \] we will break it down step by step. ### Step 1: Simplify \(\frac{\sec 56^\circ}{\csc 34^\circ}\) Using the identity \(\sec \theta = \csc(90^\circ - \theta)\), we have: \[ \sec 56^\circ = \csc(90^\circ - 56^\circ) = \csc 34^\circ. \] Thus, \[ \frac{\sec 56^\circ}{\csc 34^\circ} = 1. \] ### Step 2: Substitute into the expression Now substituting this back into the expression, we get: \[ \frac{2}{3} \cdot 1 - 2 \cos^2 20^\circ + \frac{1}{2} \cot 28^\circ \cot 35^\circ \cot 45^\circ \cot 62^\circ \cot 55^\circ - 2 \cos^2 70^\circ. \] ### Step 3: Simplify \(-2 \cos^2 20^\circ - 2 \cos^2 70^\circ\) Using the identity \(\cos(90^\circ - \theta) = \sin \theta\), we have: \[ \cos^2 70^\circ = \sin^2 20^\circ. \] Thus, \[ -2 \cos^2 20^\circ - 2 \cos^2 70^\circ = -2 \cos^2 20^\circ - 2 \sin^2 20^\circ = -2 (\cos^2 20^\circ + \sin^2 20^\circ). \] Using the Pythagorean identity \(\cos^2 \theta + \sin^2 \theta = 1\), we find: \[ -2 (\cos^2 20^\circ + \sin^2 20^\circ) = -2 \cdot 1 = -2. \] ### Step 4: Simplify \(\frac{1}{2} \cot 28^\circ \cot 35^\circ \cot 45^\circ \cot 62^\circ \cot 55^\circ\) Using the identity \(\cot \theta = \tan(90^\circ - \theta)\), we have: \[ \cot 28^\circ = \tan 62^\circ, \quad \cot 35^\circ = \tan 55^\circ. \] Thus, we can pair them: \[ \cot 28^\circ \cot 62^\circ = 1 \quad \text{and} \quad \cot 35^\circ \cot 55^\circ = 1. \] So, \[ \cot 28^\circ \cot 35^\circ \cot 45^\circ \cot 62^\circ \cot 55^\circ = 1 \cdot 1 \cdot 1 = 1. \] Thus, \[ \frac{1}{2} \cot 28^\circ \cot 35^\circ \cot 45^\circ \cot 62^\circ \cot 55^\circ = \frac{1}{2}. \] ### Step 5: Combine all parts Now we can combine all parts: \[ \frac{2}{3} - 2 + \frac{1}{2}. \] To combine these, we need a common denominator. The least common multiple of 3 and 2 is 6. Converting each term: \[ \frac{2}{3} = \frac{4}{6}, \quad -2 = -\frac{12}{6}, \quad \frac{1}{2} = \frac{3}{6}. \] Now substituting back, we have: \[ \frac{4}{6} - \frac{12}{6} + \frac{3}{6} = \frac{4 - 12 + 3}{6} = \frac{-5}{6}. \] ### Final Answer The final value of the expression is: \[ \boxed{-\frac{5}{6}}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 33 |25 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • VOLUME AND SURFACE AREA

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 5|20 Videos

Similar Questions

Explore conceptually related problems

Find the value of cot^(2)A - "cosec"^(2)A.

Find the value of sqrt(cosec^(2) 45^(@) - cot^(2) 45^(@))

(1 - cot^(2)45^(@))/(1 + cot^(2)45^(@)) =

Without using trigonometric tables , evaluate : ((tan20^(@))/(cosec70^(@)))^(2)+((cot20^(@))/(sec70^(@)))^2+2tan 15^(@)tan37^(@)tan53^(@)tan60^(@)tan75^(@)

What is the value of "cosec"^(2) 68^(@) + sec^(2)56^(@) - cot^(2)34^(@) - tan^(2)22^(@) ?

Without using trigonometric tables, evaluate : (i) (sin16^@)/(cos 74^@) (ii) (sec 11^@)/(cosec 79^@) (iii) (tan 27^@)/(cot 63^@) (iv) (cos 35^@)/(sin 55^@) (v) (cosec 42^@)/(sec 48^@) (vi) (cot 38^@)/(tan 52^@)

The value of cot5^(@)*cot15^(@)* cot 25^(@)* cot 35^(@)* cot45^(@) * cot 55^(@) * cot65^(@) * cot 75^(@) * cot 85^(@) is ________

Without using trigonometric tables , evaluate : (i) (sin40^(@))/(cos50^(@))+(3tan50^(@))/(cot40^(@)) (ii) (sec37^(@))/("cosec "53^(@))-(tan20^(@))/(cot70^(@)) (iii) (cos74^(@))/(sin16^(@))+(sin12^(@))/(cos78^(@))-sin18^(@)sec72^(@) (iv) sin35^(@)sec55^(@)+(4sec32^(@))/("cosec "58^(@))

3 cot^(2) 60^(@) + sec^(2) 45 …………