Home
Class 8
MATHS
Evaluate sin (50^(@) + theta) - cos (40...

Evaluate ` sin (50^(@) + theta) - cos (40^(@) - theta) + tan 1^(@) tan 15^(@) tan 20^(@) tan 70^(@) tan 65^(@) tan 89^(@) + sec (90^(@) - theta). cosec theta - tan (90^(@) - theta ) cot theta `

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \sin(50^\circ + \theta) - \cos(40^\circ - \theta) + \tan(1^\circ) \tan(15^\circ) \tan(20^\circ) \tan(70^\circ) \tan(65^\circ) \tan(89^\circ) + \sec(90^\circ - \theta) \csc(\theta) - \tan(90^\circ - \theta) \cot(\theta), \] we will simplify it step by step. ### Step 1: Simplify \(\sin(50^\circ + \theta) - \cos(40^\circ - \theta)\) Using the identity \(\sin(A + B) = \cos(90^\circ - (A + B))\): \[ \sin(50^\circ + \theta) = \cos(90^\circ - (50^\circ + \theta)) = \cos(40^\circ - \theta). \] Thus, \[ \sin(50^\circ + \theta) - \cos(40^\circ - \theta) = 0. \] **Hint:** Use the sine and cosine identities to simplify expressions. ### Step 2: Simplify \(\sec(90^\circ - \theta) \csc(\theta)\) Using the identity \(\sec(90^\circ - \theta) = \csc(\theta)\): \[ \sec(90^\circ - \theta) \csc(\theta) = \csc(\theta) \csc(\theta) = \csc^2(\theta). \] **Hint:** Remember that \(\sec(90^\circ - \theta) = \csc(\theta)\). ### Step 3: Simplify \(-\tan(90^\circ - \theta) \cot(\theta)\) Using the identity \(\tan(90^\circ - \theta) = \cot(\theta)\): \[ -\tan(90^\circ - \theta) \cot(\theta) = -\cot(\theta) \cot(\theta) = -\cot^2(\theta). \] **Hint:** Recall that \(\tan(90^\circ - \theta) = \cot(\theta)\). ### Step 4: Combine the results Now we have: \[ 0 + \tan(1^\circ) \tan(15^\circ) \tan(20^\circ) \tan(70^\circ) \tan(65^\circ) \tan(89^\circ) + \csc^2(\theta) - \cot^2(\theta). \] ### Step 5: Evaluate \(\tan(1^\circ) \tan(15^\circ) \tan(20^\circ) \tan(70^\circ) \tan(65^\circ) \tan(89^\circ)\) Using the identity \(\tan(90^\circ - x) = \cot(x)\), we can pair terms: - \(\tan(1^\circ) = \cot(89^\circ)\) - \(\tan(15^\circ) = \cot(75^\circ)\) - \(\tan(20^\circ) = \cot(70^\circ)\) Thus, we can express the product as: \[ \tan(1^\circ) \tan(89^\circ) \cdot \tan(15^\circ) \tan(75^\circ) \cdot \tan(20^\circ) \tan(70^\circ) = 1 \cdot 1 \cdot 1 = 1. \] **Hint:** Use the cotangent and tangent identities to simplify products. ### Step 6: Final evaluation Now we can substitute back: \[ 1 + \csc^2(\theta) - \cot^2(\theta). \] Using the identity \(\csc^2(\theta) = 1 + \cot^2(\theta)\): \[ 1 + (1 + \cot^2(\theta)) - \cot^2(\theta) = 1 + 1 = 2. \] ### Final Answer Thus, the value of the expression is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Question Bank - 33 |25 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 40|1 Videos
  • VOLUME AND SURFACE AREA

    S CHAND IIT JEE FOUNDATION|Exercise Unit Test - 5|20 Videos

Similar Questions

Explore conceptually related problems

tan theta+tan(90^(@)-theta)=sec theta xx sec(90^(@)-theta)

tan^(2)(90^(@) - theta) - cosec^(2) theta =

((cos (90 ^ (@)) - theta) sin (90 ^ (@) - theta)) / (tan (90 ^ (@) - theta))

Evaluate : (cos^(2)(45^(@) + theta)+ cos^(2) (45^(@) -theta))/(tan(60^(@) + theta) xx tan(30^(@) - theta))+(cot30^(@) + sin 90^(@))xx (tan60^(@) -sec0^(@))

If sec theta - cosec theta = 0 ,then the value of tan theta + cot theta is

What is the value of ( cosec (78^(@) - theta) - sec ( 12^(@) + theta) - tan (67^(@) + theta) + cot (23^(@) - theta) )/( tan 13^(@) tan 37^(@) tan 45^(@) tan 53^(@) tan 77^(@) ) ?

Prove that: cot theta + tan theta = cosec theta sec theta .

tan theta+(1)/(tan theta)=sec theta cosec theta