Home
Class 8
MATHS
If cos theta = (3)/(5) , then the valu...

If ` cos theta = (3)/(5)` , then the value of `(sin theta - tan theta + 1)/( 2 tan^(2) theta)` is

A

`(13)/(15)`

B

`(91)/(160)`

C

`(14)/(15)`

D

`(92)/(160)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos \theta = \frac{3}{5} \), we need to find the value of \( \frac{\sin \theta - \tan \theta + 1}{2 \tan^2 \theta} \). ### Step 1: Find \( \sin \theta \) and \( \tan \theta \) Since we know \( \cos \theta = \frac{3}{5} \), we can use the Pythagorean identity to find \( \sin \theta \). Using the identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] we can substitute \( \cos \theta \): \[ \sin^2 \theta + \left(\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{9}{25} = 1 \] Subtract \( \frac{9}{25} \) from both sides: \[ \sin^2 \theta = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] Taking the square root gives: \[ \sin \theta = \frac{4}{5} \quad (\text{since } \theta \text{ is in the first quadrant}) \] Now, we can find \( \tan \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] ### Step 2: Substitute \( \sin \theta \) and \( \tan \theta \) into the expression Now we substitute \( \sin \theta \) and \( \tan \theta \) into the expression: \[ \frac{\sin \theta - \tan \theta + 1}{2 \tan^2 \theta} = \frac{\frac{4}{5} - \frac{4}{3} + 1}{2 \left(\frac{4}{3}\right)^2} \] ### Step 3: Simplify the numerator First, we need a common denominator for the numerator: - The common denominator for \( 5 \) and \( 3 \) is \( 15 \). Convert each term: \[ \frac{4}{5} = \frac{12}{15}, \quad \frac{4}{3} = \frac{20}{15}, \quad 1 = \frac{15}{15} \] Now substitute these into the numerator: \[ \frac{12}{15} - \frac{20}{15} + \frac{15}{15} = \frac{12 - 20 + 15}{15} = \frac{7}{15} \] ### Step 4: Simplify the denominator Now calculate \( 2 \tan^2 \theta \): \[ \tan^2 \theta = \left(\frac{4}{3}\right)^2 = \frac{16}{9} \] Thus, \[ 2 \tan^2 \theta = 2 \cdot \frac{16}{9} = \frac{32}{9} \] ### Step 5: Combine the results Now we can combine the results: \[ \frac{\frac{7}{15}}{\frac{32}{9}} = \frac{7}{15} \cdot \frac{9}{32} = \frac{7 \cdot 9}{15 \cdot 32} = \frac{63}{480} \] ### Step 6: Simplify the fraction Now we simplify \( \frac{63}{480} \): The greatest common divisor of \( 63 \) and \( 480 \) is \( 3 \): \[ \frac{63 \div 3}{480 \div 3} = \frac{21}{160} \] ### Final Answer Thus, the value of \( \frac{\sin \theta - \tan \theta + 1}{2 \tan^2 \theta} \) is: \[ \frac{21}{160} \]
Promotional Banner

Topper's Solved these Questions

  • SOME APPLICATIONS OF TRIGONOMETRY

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 33 |10 Videos
  • SIMULTANEOUS LINEAR EQUATIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos

Similar Questions

Explore conceptually related problems

If sin theta=(3)/(5), then find the values of cos theta and tan theta

If cos theta=(3)/(5), find the value of (sin theta-(1)/(tan theta))/(2tan theta)

If tan theta=(12)/(13) then value of (2sin theta cos theta)/(cos^(2)theta-sin^(2)theta) is

If tan theta = 4/3 ,then the value of (3 sin theta + 2cos theta)/(3 sin theta - 2 cos theta) is

If tan theta = (5)/(4) , then the value of ((3 sin theta + 4 cos theta)/(3 sin theta - 4 cos theta))^(2) is

sec theta+tan theta=5 then the value of sin theta+cos theta

If tan theta=(4)/(5), find the value of (cos theta-sin theta)/(cos theta+sin theta)

If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the value of (tan^(2) theta + 1)/(tan^(2) theta - 1) is

If sec theta =(5)/(4),"find the value of "((2cos theta - sin theta ))/((cot theta - tan theta ))=.

If sec theta=(5)/(4), find the value of (sin theta-2cos theta)/(tan theta-cot theta)

S CHAND IIT JEE FOUNDATION-SOME APPLICATIONS OF TRIGONOMETRY-Unit Test - 6
  1. If tan x = (3)/( 4) , 0 lt x lt 90^(@) , then what is value of sin x ...

    Text Solution

    |

  2. What is the expression (tan x )/( 1 + sec x) - (tan x)/( 1 - sec x) e...

    Text Solution

    |

  3. If tan theta = 1 and sin phi = (1)/(sqrt(2)), and theta, phi in[0,pi/...

    Text Solution

    |

  4. If cos theta = (3)/(5) , then the value of (sin theta - tan theta + ...

    Text Solution

    |

  5. Given x cos theta + y sin theta = 2 and x cos theta - y sin theta ...

    Text Solution

    |

  6. Which of the following is /are the value (s) of the the expression ? ...

    Text Solution

    |

  7. If sin A = (2 m n)/( m^(2) + n^(2)) , What is the value of tan A ?

    Text Solution

    |

  8. If sec^(2) theta + tan^(2) theta = (5)/(3) and 0 le theta le (pi)/(2)...

    Text Solution

    |

  9. Evaluate : (5 sin ^(2) 30^(@) + cos ^(2) 45^(@) + 4 tan ^(2) 60^(@))/(...

    Text Solution

    |

  10. Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec^(2) 30^(@) - tan^(2) 45^(@))/( ...

    Text Solution

    |

  11. The value of sin^(2) 1^(@) + sin^(2) 2^(@) + sin^(2) 3^(@)+ . . . . +...

    Text Solution

    |

  12. If tan 2 A = cot ( A - 60^(@)) , where 2 A is an acute angle then th...

    Text Solution

    |

  13. Evaluate : ( 2 cos 53^(@) cosec 37^(@))/(( cos^(2) 29^(@) + cos^(2) 61...

    Text Solution

    |

  14. Evaluate : sin theta cos theta - (sin theta cos (90^(@) - theta) co...

    Text Solution

    |

  15. Using trigonometric identities 5 cosec ^(2) theta - 5 cot ^(2) theta ...

    Text Solution

    |

  16. The angle of elevation of the top of a tower at a horizontal distanc...

    Text Solution

    |

  17. a person aims at a bird on top of a 5 metre high pole with an elevati...

    Text Solution

    |

  18. Horizontal distance between two pillars of different heights is 60 m...

    Text Solution

    |

  19. The angles of elevation of the top of a tower h metre tall from two di...

    Text Solution

    |

  20. A radio transmitter antenna of height 100 m stands at the top of a ta...

    Text Solution

    |