Home
Class 8
MATHS
Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec^(...

Evaluate : `( 5 cos ^(2) 60^(@) + 4 sec^(2) 30^(@) - tan^(2) 45^(@))/( sin^(2) 30^(@) + cos^(2) 30^(@))`

A

`2 (5)/(16)`

B

`(67)/(12)`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{5 \cos^2 60^\circ + 4 \sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ} \] we will follow these steps: ### Step 1: Calculate the trigonometric values - \(\cos 60^\circ = \frac{1}{2}\) - \(\sec 30^\circ = \frac{1}{\cos 30^\circ} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}\) - \(\tan 45^\circ = 1\) - \(\sin 30^\circ = \frac{1}{2}\) - \(\cos 30^\circ = \frac{\sqrt{3}}{2}\) ### Step 2: Substitute the values into the expression Substituting the values we calculated: \[ \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] \[ \sec^2 30^\circ = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3} \] \[ \tan^2 45^\circ = 1^2 = 1 \] \[ \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] \[ \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] ### Step 3: Substitute these values into the expression Now substituting these values into the expression: \[ \frac{5 \cdot \frac{1}{4} + 4 \cdot \frac{4}{3} - 1}{\frac{1}{4} + \frac{3}{4}} \] ### Step 4: Simplify the numerator Calculating the numerator: \[ 5 \cdot \frac{1}{4} = \frac{5}{4} \] \[ 4 \cdot \frac{4}{3} = \frac{16}{3} \] So, the numerator becomes: \[ \frac{5}{4} + \frac{16}{3} - 1 \] To combine these, we need a common denominator. The least common multiple of 4 and 3 is 12. Converting each term: \[ \frac{5}{4} = \frac{15}{12}, \quad \frac{16}{3} = \frac{64}{12}, \quad 1 = \frac{12}{12} \] Now substituting back into the numerator: \[ \frac{15}{12} + \frac{64}{12} - \frac{12}{12} = \frac{15 + 64 - 12}{12} = \frac{67}{12} \] ### Step 5: Simplify the denominator Now for the denominator: \[ \frac{1}{4} + \frac{3}{4} = 1 \] ### Step 6: Final Calculation Now substituting back into the expression: \[ \frac{\frac{67}{12}}{1} = \frac{67}{12} \] Thus, the final answer is: \[ \frac{67}{12} \]
Promotional Banner

Topper's Solved these Questions

  • SOME APPLICATIONS OF TRIGONOMETRY

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 33 |10 Videos
  • SIMULTANEOUS LINEAR EQUATIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-4|10 Videos

Similar Questions

Explore conceptually related problems

The value of (cos^(2)60^(@)+4sec^(2)30^(@)-tan^(2)45^(@))/(sin^(2)30^(@)+cos^(2)30^(@)) is

(5cos ^ (2) 60 ^ (@) + 4sec ^ (2) 30 ^ (@) - tan ^ (2) 40 ^ (@)) / (sin ^ (2) 30 ^ (@) + cos ^ ( 2) 30 ^ (@))

Evaluate : 5 cos^(2) 30 + 4 sec^(2) 30 - tan^(2) 45 .

Evaluate : (5 cos^(2)60^@+4cos^(2)30^@ - tan^(2)45^@)/(sin^(2) 30^@+cos^2 60^@)

Evaluate : 3 cos^(2)60^(@)sec^(2)30^(@)-2 sin^(2)30^(@)tan^(2)60^(@)

Evaluate: (sin^(4) 60^(@) + sec^(4) 30^(@)) - 2 (cos^(2) 45^(@) - sin^(2) 90^(@))

sin^(2) 60^(@) + 2 tan 45^(@) - cos^(2) 30^(@)

Evaluate: (sin^(4) 60^(@) + sec^(4)30^(@)) - 2(cos^(2)45^(@) - sin^(2) 90^(@))

Evaluate : 2 tan ^(2) 45^(@) + cos ^(2) 30^(@) - sin ^(2) 60^(@)

S CHAND IIT JEE FOUNDATION-SOME APPLICATIONS OF TRIGONOMETRY-Unit Test - 6
  1. If tan x = (3)/( 4) , 0 lt x lt 90^(@) , then what is value of sin x ...

    Text Solution

    |

  2. What is the expression (tan x )/( 1 + sec x) - (tan x)/( 1 - sec x) e...

    Text Solution

    |

  3. If tan theta = 1 and sin phi = (1)/(sqrt(2)), and theta, phi in[0,pi/...

    Text Solution

    |

  4. If cos theta = (3)/(5) , then the value of (sin theta - tan theta + ...

    Text Solution

    |

  5. Given x cos theta + y sin theta = 2 and x cos theta - y sin theta ...

    Text Solution

    |

  6. Which of the following is /are the value (s) of the the expression ? ...

    Text Solution

    |

  7. If sin A = (2 m n)/( m^(2) + n^(2)) , What is the value of tan A ?

    Text Solution

    |

  8. If sec^(2) theta + tan^(2) theta = (5)/(3) and 0 le theta le (pi)/(2)...

    Text Solution

    |

  9. Evaluate : (5 sin ^(2) 30^(@) + cos ^(2) 45^(@) + 4 tan ^(2) 60^(@))/(...

    Text Solution

    |

  10. Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec^(2) 30^(@) - tan^(2) 45^(@))/( ...

    Text Solution

    |

  11. The value of sin^(2) 1^(@) + sin^(2) 2^(@) + sin^(2) 3^(@)+ . . . . +...

    Text Solution

    |

  12. If tan 2 A = cot ( A - 60^(@)) , where 2 A is an acute angle then th...

    Text Solution

    |

  13. Evaluate : ( 2 cos 53^(@) cosec 37^(@))/(( cos^(2) 29^(@) + cos^(2) 61...

    Text Solution

    |

  14. Evaluate : sin theta cos theta - (sin theta cos (90^(@) - theta) co...

    Text Solution

    |

  15. Using trigonometric identities 5 cosec ^(2) theta - 5 cot ^(2) theta ...

    Text Solution

    |

  16. The angle of elevation of the top of a tower at a horizontal distanc...

    Text Solution

    |

  17. a person aims at a bird on top of a 5 metre high pole with an elevati...

    Text Solution

    |

  18. Horizontal distance between two pillars of different heights is 60 m...

    Text Solution

    |

  19. The angles of elevation of the top of a tower h metre tall from two di...

    Text Solution

    |

  20. A radio transmitter antenna of height 100 m stands at the top of a ta...

    Text Solution

    |