Home
Class 9
MATHS
If x=(sqrt3+sqrt2)/(sqrt3-sqrt2) and y=(...

If `x=(sqrt3+sqrt2)/(sqrt3-sqrt2) and y=(sqrt3-sqrt2)/(sqrt3+sqrt2)`, then the value of `x^2+y^2` is

A

90

B

98

C

96

D

94

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 \) where \[ x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \quad \text{and} \quad y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}. \] ### Step 1: Rationalize \( x \) To rationalize \( x \), we multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})}. \] ### Step 2: Simplify the denominator The denominator simplifies as follows: \[ (\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 - 2 = 1. \] ### Step 3: Simplify the numerator Now simplify the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{3}\sqrt{2} = 5 + 2\sqrt{6}. \] Thus, we have: \[ x = 5 + 2\sqrt{6}. \] ### Step 4: Rationalize \( y \) Now we will rationalize \( y \): \[ y = \frac{(\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}. \] ### Step 5: Simplify the denominator for \( y \) The denominator simplifies as follows: \[ (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 3 - 2 = 1. \] ### Step 6: Simplify the numerator for \( y \) Now simplify the numerator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 + 2 - 2\sqrt{3}\sqrt{2} = 5 - 2\sqrt{6}. \] Thus, we have: \[ y = 5 - 2\sqrt{6}. \] ### Step 7: Calculate \( x^2 \) Now we calculate \( x^2 \): \[ x^2 = (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6}. \] ### Step 8: Calculate \( y^2 \) Next, we calculate \( y^2 \): \[ y^2 = (5 - 2\sqrt{6})^2 = 25 - 20\sqrt{6} + 24 = 49 - 20\sqrt{6}. \] ### Step 9: Add \( x^2 \) and \( y^2 \) Now we add \( x^2 \) and \( y^2 \): \[ x^2 + y^2 = (49 + 20\sqrt{6}) + (49 - 20\sqrt{6}) = 49 + 49 = 98. \] ### Final Answer Thus, the value of \( x^2 + y^2 \) is \[ \boxed{98}. \]
Promotional Banner

Topper's Solved these Questions

  • FOOTSTEPS TOWARDS (JEE MAIN)

    MTG IIT JEE FOUNDATION|Exercise Section B (Numerical Value Type Questions)|10 Videos
  • COORDINATE GEOMETRY

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|15 Videos
  • FOOTSTEPS TOWARDS CBSE BOARD

    MTG IIT JEE FOUNDATION|Exercise PART-B (SECTION-IV)|4 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt3+sqrt2)/(sqrt3-sqrt2)andy=(sqrt3-sqrt2)/(sqrt3+sqrt2) then find the value of x^(2)+y^(2) ?

If a=(sqrt3+ sqrt2)/(sqrt3- sqrt2) and b=(sqrt3- sqrt2)/(sqrt3+sqrt2) , then what is the value of a^2+b^2-ab ?

If x=(sqrt5+sqrt2)/(sqrt5-sqrt2) and y=(sqrt5-sqrt2)/(sqrt5+sqrt2) then find the value of (3x-2y)(x+2y)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then the value of x^(2)+xy+y^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2) then x^2 +xy +y^2 is a multiple of

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)