Home
Class 9
MATHS
ABCD is a cyclic quadrilateral such that...

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and `angleADC= 140^@,` then `angleBAC` is equal to

A

`80^@`

B

`50^@`

C

`40^@`

D

`30^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the measure of angle \( \angle BAC \) in the cyclic quadrilateral \( ABCD \) where \( AB \) is the diameter of the circumscribing circle and \( \angle ADC = 140^\circ \). ### Step-by-Step Solution: 1. **Understanding the Properties of a Cyclic Quadrilateral**: - In a cyclic quadrilateral, the sum of the opposite angles is \( 180^\circ \). - Since \( AB \) is the diameter, \( \angle ACB \) will be \( 90^\circ \) (angle subtended by a diameter). 2. **Given Information**: - \( \angle ADC = 140^\circ \). 3. **Finding \( \angle ABC \)**: - Using the property of cyclic quadrilaterals: \[ \angle ABC + \angle ADC = 180^\circ \] - Substitute \( \angle ADC \): \[ \angle ABC + 140^\circ = 180^\circ \] - Solving for \( \angle ABC \): \[ \angle ABC = 180^\circ - 140^\circ = 40^\circ \] 4. **Finding \( \angle ACB \)**: - Since \( AB \) is the diameter, we have: \[ \angle ACB = 90^\circ \] 5. **Finding \( \angle BAC \)**: - In triangle \( ABC \), the sum of the angles is \( 180^\circ \): \[ \angle BAC + \angle ABC + \angle ACB = 180^\circ \] - Substitute the known angles: \[ \angle BAC + 40^\circ + 90^\circ = 180^\circ \] - Simplifying: \[ \angle BAC + 130^\circ = 180^\circ \] - Solving for \( \angle BAC \): \[ \angle BAC = 180^\circ - 130^\circ = 50^\circ \] ### Final Answer: \[ \angle BAC = 50^\circ \]
Promotional Banner

Topper's Solved these Questions

  • FOOTSTEPS TOWARDS (JEE MAIN)

    MTG IIT JEE FOUNDATION|Exercise Section B (Numerical Value Type Questions)|10 Videos
  • COORDINATE GEOMETRY

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|15 Videos
  • FOOTSTEPS TOWARDS CBSE BOARD

    MTG IIT JEE FOUNDATION|Exercise PART-B (SECTION-IV)|4 Videos

Similar Questions

Explore conceptually related problems

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angleADC=140^(@)," than "angleBAC is equal to

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC= 130^@ . Then angle BAC is equal to:

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 144^@ . Then angle BAC is equal to: (pi=22/7) ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 144^@ , है | कोण angle BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 148^@ . Then angle BAC is equal to: ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 148^@ , है | कोण angle BAC निम्नलिखित में से किसके बराबर होगा :

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC=158^@ . Then angle BAC is equal to : ABCD एक ऐसा चक्रीय चतुर्भुज है कि AB इसे घेरने वाले वृत्त का व्यास है और angle ADC=158^@ है | कोण BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 140^@ , angle BAC is equal to: ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 140^@ , है | कोण angle BAC किसके बराबर है?

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 125^@ . Then angle BAC is equal to: ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 125^@ , है | कोण angle BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is the diameter of the circle circumscribing it and angle ADC=129^@ . Then angle BAC is equal to: ABCD एक ऐसा चक्रीय चतुर्भुज है कि AB इसे घेरने वाले वृत्त का व्यास है तथा angle ADC=129^@ है | कोण BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is the diameter of the circle circumscribing it and angle ADC=155^@ . Then angle BAC is equal to: ABCD एक ऐसा चक्रीय चतुर्भुज है कि AB इसे घेरने वाले वृत्त का व्यास है तथा angle ADC=155^@ है | कोण BAC का मान ज्ञात करें |