Home
Class 9
MATHS
The value of 1/2 [(0.96 xx 0.96 xx 0.96 ...

The value of `1/2 [(0.96 xx 0.96 xx 0.96 + 0.84 xx 0.84 xx 0.84)/(0.96 xx 0.96 -0.96 xx 0.84 +0.84 xx0.84)]` is.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{2} \left[ \frac{0.96^3 + 0.84^3}{0.96^2 - 0.96 \cdot 0.84 + 0.84^2} \right] \), we can follow these steps: ### Step 1: Define Variables Let \( A = 0.96 \) and \( B = 0.84 \). This simplifies our expression. ### Step 2: Rewrite the Expression The expression can now be rewritten as: \[ \frac{1}{2} \left[ \frac{A^3 + B^3}{A^2 - AB + B^2} \right] \] ### Step 3: Use the Formula for Sum of Cubes Recall the formula for the sum of cubes: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] Using this, we can substitute \( A^3 + B^3 \) in our expression: \[ \frac{1}{2} \left[ \frac{(A + B)(A^2 - AB + B^2)}{A^2 - AB + B^2} \right] \] ### Step 4: Simplify the Expression The \( A^2 - AB + B^2 \) terms cancel out: \[ \frac{1}{2} (A + B) \] ### Step 5: Calculate \( A + B \) Now we need to find \( A + B \): \[ A + B = 0.96 + 0.84 = 1.80 \] ### Step 6: Final Calculation Now substitute back into the expression: \[ \frac{1}{2} (1.80) = 0.90 \] ### Conclusion Thus, the value of the original expression is: \[ \boxed{0.90} \]
Promotional Banner

Topper's Solved these Questions

  • FOOTSTEPS TOWARDS (JEE MAIN)

    MTG IIT JEE FOUNDATION|Exercise Section B (Numerical Value Type Questions)|10 Videos
  • COORDINATE GEOMETRY

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|15 Videos
  • FOOTSTEPS TOWARDS CBSE BOARD

    MTG IIT JEE FOUNDATION|Exercise PART-B (SECTION-IV)|4 Videos

Similar Questions

Explore conceptually related problems

(0.86 xx 0. 86 xx 0. 86 + 0. 14 xx0.14 xx 0. 14)/(0.86 xx 0.86 - 0. 86 + 0.14 + 0.14 xx 0. 14) is equal to

The value of (0.1 xx 01. xx 0.1 + 0.02 xx 0.02 xx 0.02)/( 0.2 xx 0.2 xx 0.2 + 0.04 * 0.04 * 0.04) is :

The value of 0.65 xx 0.65 + 0.35 xx 0.35+0.70 xx 0.65 is

(0.1 xx 0.1 xx 0.1 + 0.04 xx 0.04 xx 0.04) div (0.2 xx 0.2 xx 0.2 + 0.08 xx 0.08 xx 0.08) = _________

The value of (0.796 xx 0.796-0.204 xx 0.204)/(0.796 - 0.204)