Home
Class 9
MATHS
If x=1+2^(1/3)+2^(2/3), then the value o...

If `x=1+2^(1/3)+2^(2/3)`, then the value of `x^3- 3x^2- 3x -1` is____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 - 3x^2 - 3x - 1 \) given that \( x = 1 + 2^{1/3} + 2^{2/3} \). ### Step 1: Define \( x \) We start with the definition of \( x \): \[ x = 1 + 2^{1/3} + 2^{2/3} \] ### Step 2: Rewrite \( x \) Notice that \( 2^{2/3} = (2^{1/3})^2 \). Let \( y = 2^{1/3} \). Then we can rewrite \( x \) as: \[ x = 1 + y + y^2 \] ### Step 3: Find \( x + 1 \) Now, we can express \( x + 1 \): \[ x + 1 = 2 + y + y^2 \] ### Step 4: Cube \( x + 1 \) We will cube \( x + 1 \): \[ (x + 1)^3 = (2 + y + y^2)^3 \] Using the binomial expansion, this will give us: \[ = 8 + 12(y + y^2) + 6(y + y^2)^2 \] ### Step 5: Expand \( (y + y^2)^2 \) Now, we need to expand \( (y + y^2)^2 \): \[ (y + y^2)^2 = y^2 + 2y^3 + y^4 \] Since \( y^3 = 2 \), we can substitute: \[ = y^2 + 2(2) + y^4 = y^2 + 4 + y^4 \] ### Step 6: Substitute back into the cube Now substituting back into the cube expansion: \[ (x + 1)^3 = 8 + 12(y + y^2) + 6(y^2 + 4 + y^4) \] This simplifies to: \[ = 8 + 12y + 12y^2 + 6y^2 + 24 + 6y^4 \] Combining like terms: \[ = 32 + 12y + 18y^2 + 6y^4 \] ### Step 7: Calculate \( x^3 - 3x^2 - 3x - 1 \) Now, we need to find \( x^3 - 3x^2 - 3x - 1 \). We can express this as: \[ x^3 - 3x^2 - 3x - 1 = (x + 1)^3 - 3(x + 1)(x) - 1 \] Substituting \( x + 1 \) into this expression gives: \[ = (x + 1)^3 - 3(x + 1)(x) - 1 \] ### Step 8: Substitute \( x + 1 \) and simplify Substituting \( x + 1 = 2 + y + y^2 \) into the expression: \[ = (2 + y + y^2)^3 - 3(2 + y + y^2)(y + 1) - 1 \] After simplification, we find that this expression evaluates to 0. ### Final Answer Thus, the value of \( x^3 - 3x^2 - 3x - 1 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • FOOTSTEPS TOWARDS (JEE MAIN)

    MTG IIT JEE FOUNDATION|Exercise Section B (Numerical Value Type Questions)|10 Videos
  • COORDINATE GEOMETRY

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|15 Videos
  • FOOTSTEPS TOWARDS CBSE BOARD

    MTG IIT JEE FOUNDATION|Exercise PART-B (SECTION-IV)|4 Videos

Similar Questions

Explore conceptually related problems

If x = 2^(1//3) + 2^(-1//3) then the value of 2x^3 - 6x will be :

If x=2^((1)/(3)) +2^(-(1)/(3)) , then the value of 2x^(3) -6x-5 is equal to

If x=2+2^((2)/(3))+2^((1)/(3)), then the value of x^(3)-6x^(2)+6x is:

If x=2^(1//3)-2^(-1//3) then what is the value of 2x^(3)+6x ?

If x-=2+2^(2//3)+2^(1//3)" then the value "(x^(3)-6x^(2)+6x) is

If (x^3+1/x^3)=2 then the value of (x+1/x) is