Home
Class 7
MATHS
Find the value of the expressions, when ...

Find the value of the expressions, when `p= -3, q= -1" and "r= 2`
`2p-5q-8+3r`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \(2p - 5q - 8 + 3r\) when \(p = -3\), \(q = -1\), and \(r = 2\), we will substitute the values of \(p\), \(q\), and \(r\) into the expression and simplify step by step. ### Step-by-Step Solution: 1. **Write the expression**: \[ 2p - 5q - 8 + 3r \] 2. **Substitute the values of \(p\), \(q\), and \(r\)**: \[ 2(-3) - 5(-1) - 8 + 3(2) \] 3. **Calculate each term**: - For \(2(-3)\): \[ 2 \times -3 = -6 \] - For \(-5(-1)\): \[ -5 \times -1 = 5 \quad (\text{since a negative times a negative is positive}) \] - For \(-8\): \[ -8 \quad (\text{remains the same}) \] - For \(3(2)\): \[ 3 \times 2 = 6 \] 4. **Combine the results**: \[ -6 + 5 - 8 + 6 \] 5. **Perform the addition and subtraction step by step**: - First, combine \(-6\) and \(5\): \[ -6 + 5 = -1 \] - Next, add \(-1\) and \(-8\): \[ -1 - 8 = -9 \] - Finally, add \(-9\) and \(6\): \[ -9 + 6 = -3 \] 6. **Final result**: \[ \text{The value of the expression is } -3. \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise SOLVED EXAMPLES|26 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.1)|60 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Find the value of the expressions, when p= -3, q= -1" and "r= 2 4pq^(2)+7qr-6pr

find the value of: (i) p+2q+3n ,when p=1,q=5" and "n=2

Add the following expressions: p^2-q +r, q^2 -r+ p and r^2-p+q

If a,b,c denote the sides of triangleABC , show that the value of the expression, a^3 (p-q)(p-r)+b^2(q-r)+b^2(q-r)(q-p)+c^2(r-p)(r-q) cannot be negative where p,q,r in R .

If q = 5 and p = -3 , then find the value of the following expressions. 8q + 9p – 17

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

Find the value of (p^(2)+q^(2))/(r^(2)+s^(2)) , if p:q=r:s

If the origin is the centroid of the triangle whose vertices are A (2,p,-3), B(q,-2,5) and C(-5,1,r), then find the values of p,q and r.