Home
Class 7
MATHS
Find the value of the expressions, when ...

Find the value of the expressions, when `p= -3, q= -1" and "r= 2`
`4pq^(2)+7qr-6pr`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( 4pq^2 + 7qr - 6pr \) when \( p = -3 \), \( q = -1 \), and \( r = 2 \), we will substitute the values of \( p \), \( q \), and \( r \) into the expression step by step. ### Step 1: Substitute the values into the expression We start with the expression: \[ 4pq^2 + 7qr - 6pr \] Substituting \( p = -3 \), \( q = -1 \), and \( r = 2 \): \[ 4(-3)(-1)^2 + 7(-1)(2) - 6(-3)(2) \] ### Step 2: Calculate \( q^2 \) Calculate \( (-1)^2 \): \[ (-1)^2 = 1 \] Now substitute this back into the expression: \[ 4(-3)(1) + 7(-1)(2) - 6(-3)(2) \] ### Step 3: Calculate each term Now we will calculate each term one by one. 1. **First term**: \( 4(-3)(1) \) \[ = 4 \times -3 \times 1 = -12 \] 2. **Second term**: \( 7(-1)(2) \) \[ = 7 \times -1 \times 2 = -14 \] 3. **Third term**: \( -6(-3)(2) \) \[ = -6 \times -3 \times 2 = 36 \] ### Step 4: Combine the results Now we combine all the calculated terms: \[ -12 - 14 + 36 \] ### Step 5: Perform the addition and subtraction Calculating step by step: 1. Combine the first two terms: \[ -12 - 14 = -26 \] 2. Now add the third term: \[ -26 + 36 = 10 \] ### Final Result The value of the expression \( 4pq^2 + 7qr - 6pr \) when \( p = -3 \), \( q = -1 \), and \( r = 2 \) is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise SOLVED EXAMPLES|26 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.1)|60 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Find the value of the expressions, when p= -3, q= -1" and "r= 2 2p-5q-8+3r

Add the following expressions: p^2 - 7pq - q^2 and - 3p^2-2pq + 7q^2

Add the following expressions: p^2qr + pq^2r + pqr^2 and - 3pq^2r - 2 pqr^2

Find the value of a, if pq ^(2) a = (4pq + 3q) ^(2) - ( 4pq - 3q) ^(2)

Find the value of x such that PQ=QR where the coordinates of P,Q and R are (6,-1),(1,3) and (x,8) respectively.

Factorize each of the following expressions: (1) qr-pr+qs-ps(2)p^(2)q-pr^(2)-pq+r^(2) (3)1+x+xy+x^(2)y(4)ax+ay-bx-by

Find the value of (p^(2)+q^(2))/(r^(2)+s^(2)) , if p:q=r:s

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)