Home
Class 7
MATHS
Simplify combining like terms: 3a - 2b...

Simplify combining like terms:
`3a - 2b - ab - (a - b + ab) + 3ab + b - a`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression `3a - 2b - ab - (a - b + ab) + 3ab + b - a`, we will follow these steps: ### Step 1: Remove the parentheses The expression is: \[ 3a - 2b - ab - (a - b + ab) + 3ab + b - a \] When we remove the parentheses, we need to change the signs of the terms inside the parentheses because of the negative sign in front of it: \[ 3a - 2b - ab - a + b - ab + 3ab + b - a \] ### Step 2: Combine like terms Now we will group the like terms together. The like terms are those that have the same variable part. - For the terms with \(a\): - \(3a - a - a = 3a - 2a = a\) - For the terms with \(b\): - \(-2b + b + b = -2b + 2b = 0\) - For the terms with \(ab\): - \(-ab - ab + 3ab = -2ab + 3ab = ab\) ### Step 3: Write the simplified expression Now we can combine all the simplified terms: \[ a + 0 + ab = a + ab \] Thus, the simplified expression is: \[ a + ab \] ### Final Answer: The simplified expression is: \[ a + ab \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.3)|32 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.4)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.1)|60 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

a^3 - b^3 - 3a^2b+ 3ab^2, by, a^2 + b^2 - 2ab

Simplify (a - b) (a ^(2) + b ^(2) + ab) - (a +b) (a ^(2) +b ^(2) - ab)

Simplify each of the following a^(2)b(a - b^(2)) + ab^(2)(4ab - 2a^(2)) - a^(3)b(1-2b)

Factoris the expression. 4 ab ^(2) - 3a ^(2) b + 5 ab ^(2) -ab

Simplify (a^(2) - 8ab - 5) + (3ab - 4a^(2) + 8)

If a = 2 and b = 3, find the value of (i) a + b (ii) a^(2) + ab (iii) ab - a^(2) (iv) 2a - 3b (v) 5a^(2) - 2ab (vi) a^(3) - b^(3)