Home
Class 7
MATHS
Simplify combining like terms: 5x^(2)y...

Simplify combining like terms:
`5x^(2)y - 5x^(2) + 3yx^(2) - 3y^(2) + x^(2) - y^(2) + 8xy^(2) - 3y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 5x^2y - 5x^2 + 3yx^2 - 3y^2 + x^2 - y^2 + 8xy^2 - 3y^2 \), we will combine like terms step by step. ### Step 1: Rewrite the expression First, let's rewrite the expression for clarity: \[ 5x^2y - 5x^2 + 3yx^2 - 3y^2 + x^2 - y^2 + 8xy^2 - 3y^2 \] ### Step 2: Identify and combine like terms Now, we will group the like terms together. 1. **Like terms in \(x^2y\)**: - \(5x^2y\) and \(3yx^2\) (which is the same as \(3x^2y\)): \[ 5x^2y + 3x^2y = 8x^2y \] 2. **Like terms in \(x^2\)**: - \(-5x^2\) and \(x^2\): \[ -5x^2 + x^2 = -4x^2 \] 3. **Like terms in \(y^2\)**: - \(-3y^2\), \(-y^2\), and \(-3y^2\): \[ -3y^2 - y^2 - 3y^2 = -7y^2 \] 4. **The term with \(xy^2\)**: - \(8xy^2\) remains as it is since there are no other \(xy^2\) terms to combine. ### Step 3: Combine all the results Now we can combine all the simplified terms together: \[ 8x^2y - 4x^2 - 7y^2 + 8xy^2 \] ### Final Answer Thus, the simplified expression is: \[ 8x^2y - 4x^2 - 7y^2 + 8xy^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.3)|32 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.4)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.1)|60 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Simplify combining like terms: (3y^(2) +5y - 4) - (8y - y^(2) - 4)

Add: 8x^(2) - 5xy - 3y^(2), 2xy - 6y^(2) + 3x^(2) and y^(2) + xy - 6x^(2)

Add : 5x ^(2) - 3xy + 4y ^(2) - 9, 7y ^(2)+ 5xy - 2x ^(2) + 13

Simplify the expression by combining the like terms: 7x^3 -3x^2y + xy^2 + x^2y - y^3

Add: 4x^(2) - 7xy + 4y^(2) - 3, 5 + 6y^(2) - 8xy + x^(2) and 6 - 2xy + 2x^(2) - 5y^(2)

Simplify : (x^(2) - y^(2) + 2xy + 1) - (x^(2) + y^(2) + 4xy - 5)

Add : 4x^(2)y, - 3xy^(2), -5xy^(2), 5x^(2)y