Home
Class 7
MATHS
Add: a + b - 3, b - a + 3, a - b + 3...

Add:
`a + b - 3, b - a + 3, a - b + 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of adding the expressions \( a + b - 3 \), \( b - a + 3 \), and \( a - b + 3 \), we will follow these steps: ### Step 1: Write down the expressions We have the following expressions to add: 1. \( a + b - 3 \) 2. \( b - a + 3 \) 3. \( a - b + 3 \) ### Step 2: Combine the expressions We can combine these expressions into one equation: \[ (a + b - 3) + (b - a + 3) + (a - b + 3) \] ### Step 3: Remove the brackets Since we are adding all the expressions, we can remove the brackets without changing the signs: \[ a + b - 3 + b - a + 3 + a - b + 3 \] ### Step 4: Group like terms Now, we will group the like terms together: - The \( a \) terms: \( a - a + a \) - The \( b \) terms: \( b + b - b \) - The constant terms: \( -3 + 3 + 3 \) ### Step 5: Simplify each group 1. For the \( a \) terms: \[ a - a + a = a \] 2. For the \( b \) terms: \[ b + b - b = b \] 3. For the constant terms: \[ -3 + 3 + 3 = 3 - 3 + 3 = 3 \] ### Step 6: Combine the results Now, we combine the simplified terms: \[ a + b + 3 \] ### Final Answer Thus, the final result of adding the three expressions is: \[ \boxed{a + b + 3} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.3)|32 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.4)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.1)|60 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Add: 6a + 8b - 5c, 2b + c - 4a and a - 3b - 2c.

Add: 3a - 4b + 4c, 2a + 3b - 8c, a - 6b + c

Add 4a b ,\ -7a b ,\ -10 a b\ a n d\ 3a bdot

Add : 3a ( 2b + 5c), 3c (2a + 2b)

Verify that (a-b) (a -b) (a-b) = a ^(3) - 3a ^(2) b + 3a b ^(2) - b ^(3)

Verify the (a+b ) (a+b) (a +b) = a ^(3) + 3a ^(2) b + 3a^(2) b + 3a b ^(2) +b ^(3)

If   a : b = 7 : 3 , then find ( a^3 - b^3 ) /b^3

If a : b =2 : 3 ," then find "(3a - b) : ( 2a+ 3b) .