Home
Class 7
MATHS
Add : 3p^(2)q^(2) - 4pq + 5, - 10p^(2)...

Add :
`3p^(2)q^(2) - 4pq + 5, - 10p^(2) q^(2), 15 + 9pq + 7p^(2)q^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of adding the algebraic expressions \(3p^2q^2 - 4pq + 5\), \(-10p^2q^2\), and \(15 + 9pq + 7p^2q^2\), we will follow these steps: ### Step 1: Write down all the expressions We have the following expressions to add: 1. \(3p^2q^2 - 4pq + 5\) 2. \(-10p^2q^2\) 3. \(15 + 9pq + 7p^2q^2\) ### Step 2: Combine like terms We will group the like terms together: - The \(p^2q^2\) terms: \(3p^2q^2\), \(-10p^2q^2\), and \(7p^2q^2\) - The \(pq\) terms: \(-4pq\) and \(9pq\) - The constant terms: \(5\) and \(15\) ### Step 3: Add the \(p^2q^2\) terms \[ 3p^2q^2 - 10p^2q^2 + 7p^2q^2 = (3 - 10 + 7)p^2q^2 = 0p^2q^2 \] So, the \(p^2q^2\) terms cancel out. ### Step 4: Add the \(pq\) terms \[ -4pq + 9pq = (-4 + 9)pq = 5pq \] ### Step 5: Add the constant terms \[ 5 + 15 = 20 \] ### Step 6: Combine all results Now, we combine the results from the previous steps: \[ 0p^2q^2 + 5pq + 20 = 5pq + 20 \] ### Step 7: Factor out the common term We can factor out the common term \(5\): \[ 5(pq + 4) \] ### Final Answer Thus, the final answer is: \[ 5(pq + 4) \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.3)|32 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.4)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.1)|60 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

(p-q)^(2)+4pq

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

Subtract: 4pq - 5a^(2) - 3p^(2) "from" 5p^(2) + 3q^(2) - pq

If Delta=|[0,q,r],[q,r,p],[r,p,q]|, then |[rq-p^(2),pr-q^(2),pq-r^(2)],[rp-q^(2),pq-r^(2),rq-p^(2)],[pq-r^(2),rq-p^(2),pr-q^(2)]| is equal to

Verify the (7p - 13q ) ^(2) + 364 pq = (7p + 13q) ^(2)

Common factor of 11 pq ^(2); 121 p ^(2) q ^(3) and 1331 p ^(2) q

Find the value of a, if pq ^(2) a = (4pq + 3q) ^(2) - ( 4pq - 3q) ^(2)