Home
Class 7
MATHS
Add: ab - 4a, 4b - ab, 4a - 4b...

Add:
`ab - 4a, 4b - ab, 4a - 4b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of adding the expressions \( ab - 4a \), \( 4b - ab \), and \( 4a - 4b \), we will follow these steps: ### Step 1: Write down the expressions We start with the three expressions: 1. \( ab - 4a \) 2. \( 4b - ab \) 3. \( 4a - 4b \) ### Step 2: Combine the expressions Now, we will add them together: \[ (ab - 4a) + (4b - ab) + (4a - 4b) \] ### Step 3: Rearrange the terms Next, we can rearrange the terms to group like terms together: \[ (ab - ab) + (-4a + 4a) + (4b - 4b) \] ### Step 4: Simplify each group Now, we simplify each group: - \( ab - ab = 0 \) - \( -4a + 4a = 0 \) - \( 4b - 4b = 0 \) ### Step 5: Combine the results Putting it all together, we have: \[ 0 + 0 + 0 = 0 \] ### Final Answer The sum of the expressions \( ab - 4a \), \( 4b - ab \), and \( 4a - 4b \) is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.3)|32 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.4)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.1)|60 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Add : 4a (a - b +c), 2b (a - b + c)

Find the sum of the expressions - 3a ^(2) + 2 ab - 4b^(2) and - 6a ^(2) + 4b.

Find the value of the expression 3ab - 4a + 5 ,if a=4 and b = 2 .

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)