Home
Class 7
MATHS
Add: x^(2) y^(2) -1, y^(2) - 1 - x^(2)...

Add:
`x^(2) y^(2) -1, y^(2) - 1 - x^(2), 1 - x^(2) - y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of adding the expressions \( x^2y^2 - 1 \), \( y^2 - 1 - x^2 \), and \( 1 - x^2 - y^2 \), we can follow these steps: ### Step-by-Step Solution: 1. **Write down the expressions**: We have three expressions to add: \[ (x^2y^2 - 1) + (y^2 - 1 - x^2) + (1 - x^2 - y^2) \] 2. **Combine the expressions**: We can combine all the terms: \[ x^2y^2 - 1 + y^2 - 1 - x^2 + 1 - x^2 - y^2 \] 3. **Group like terms**: Now, let's group the like terms together: - The constant terms: \(-1 - 1 + 1 = -1\) - The \(x^2\) terms: \(-x^2 - x^2 = -2x^2\) - The \(y^2\) terms: \(y^2 - y^2 = 0\) - The \(x^2y^2\) term: \(x^2y^2\) Putting it all together, we have: \[ x^2y^2 - 2x^2 - 1 \] 4. **Final expression**: The final result after combining all the terms is: \[ x^2y^2 - 2x^2 - 1 \] ### Final Answer: \[ x^2y^2 - 2x^2 - 1 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.3)|32 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.4)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.1)|60 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

The centres of the circles x ^(2) + y ^(2) =1, x ^(2) + y^(2)+ 6x - 2y =1 and x ^(2) + y^(2) -12 x + 4y =1 are

If x + y + z = xyz , prove that x(1 -y^(2)) (1- z^(2))+ y(1- z^(2))(1- x^(2)) +z(1-x^(2)) (1- y^(2)) = 4xyz .

y = e ^ (xx) x tan ^ (- 1) x, showthat (1 + x ^ (2)) y_ (2) -2 (1-x + x ^ (2)) y_ (1) + (1 -x ^ (2)) y = 0

If x+y+z=xzy , prove that : x(1-y^2) (1-z^2) + y(1-z^2) (1-x^2) + z (1-x^2) (1-y^2) = 4xyz .

if (x_ (1), y_ (1)), (x_ (2), y_ (2)), (x_ (3), y_ (3)) are vertices equilateral triangle such that (x_ (1) -2) ^ (2) + (y_ (1) -3) ^ (2) = (x_ (2) -2) ^ (2) + (y_ (2) -3) ^ (2) = (x_ (3) - 2) ^ (2) + (y_ (3) -3) ^ (2) then x_ (1) + x_ (2) + x_ (3) +2 (y_ (1) + y_ (2) + y_ (3) ))

Add 1/3 x^2y^2, 3x^2y^2