Home
Class 7
MATHS
Subtract: 4pq - 5a^(2) - 3p^(2) "from"...

Subtract:
`4pq - 5a^(2) - 3p^(2) "from" 5p^(2) + 3q^(2) - pq`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of subtracting \( 4pq - 5a^2 - 3p^2 \) from \( 5p^2 + 3q^2 - pq \), we will follow these steps: ### Step 1: Write the expression for subtraction We need to subtract \( 4pq - 5a^2 - 3p^2 \) from \( 5p^2 + 3q^2 - pq \). This can be written as: \[ (5p^2 + 3q^2 - pq) - (4pq - 5a^2 - 3p^2) \] ### Step 2: Distribute the negative sign Distributing the negative sign across the second expression gives: \[ 5p^2 + 3q^2 - pq - 4pq + 5a^2 + 3p^2 \] ### Step 3: Combine like terms Now, we will combine the like terms: - Combine \( 5p^2 \) and \( 3p^2 \): \[ 5p^2 + 3p^2 = 8p^2 \] - Combine \( -pq \) and \( -4pq \): \[ -pq - 4pq = -5pq \] - The \( 3q^2 \) and \( 5a^2 \) terms remain as they are since there are no like terms to combine with them. ### Step 4: Write the final expression Putting it all together, we get: \[ 8p^2 + 3q^2 + 5a^2 - 5pq \] ### Final Answer Thus, the result of subtracting \( 4pq - 5a^2 - 3p^2 \) from \( 5p^2 + 3q^2 - pq \) is: \[ 8p^2 + 3q^2 + 5a^2 - 5pq \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.3)|32 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.4)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 11.1)|60 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Subtract : 4p^(2) + 5q^(2) - 6r^(2) + 7 from 3p^(2) - 4q^(2) - 5r^(2) - 6

Subtract : - 3p ^(2) + 3pq +3p x from 3p (- p -a - r)

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

Subtract : -6p + q + 3r + 8" from "p - 2q - 5r - 8

Subtract 3pq(p-q) from 2pq(p+q)

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

Common factor of 11 pq ^(2); 121 p ^(2) q ^(3) and 1331 p ^(2) q

(p-q)^(2)+4pq

(a) Subtract 4a-7ab+3b+12 from 12a-9ab+5b(r) Subtract 3xy+5yz-7zx from 5xy-2yx+10xyz( ij ) Subtract 4p^(2)q-3pq+5pq^(2)-8p+7q-10 from 18-3p-11q+5pq-2pq^(2)+5p^(2)q