Home
Class 7
MATHS
If A = 19x^(2) - x + 6, B = x^(2) - x, C...

If `A = 19x^(2) - x + 6, B = x^(2) - x, C = 4x - 1`, find A-B+C.

A

`17x^(2) - 5x + 7`

B

` 18x^(2) + 4x -5`

C

`24x^(2) - 4x +7`

D

`18x^(2) +4x +5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( A - B + C \) where \( A = 19x^2 - x + 6 \), \( B = x^2 - x \), and \( C = 4x - 1 \), we will follow these steps: ### Step 1: Write down the expressions for A, B, and C We have: - \( A = 19x^2 - x + 6 \) - \( B = x^2 - x \) - \( C = 4x - 1 \) ### Step 2: Substitute the expressions into \( A - B + C \) Now, we substitute the values of A, B, and C into the expression: \[ A - B + C = (19x^2 - x + 6) - (x^2 - x) + (4x - 1) \] ### Step 3: Distribute the negative sign in front of B When we subtract B, we need to distribute the negative sign: \[ = 19x^2 - x + 6 - x^2 + x + 4x - 1 \] ### Step 4: Combine like terms Now, we will combine the like terms: - For \( x^2 \) terms: \( 19x^2 - x^2 = 18x^2 \) - For \( x \) terms: \( -x + x + 4x = 4x \) - For constant terms: \( 6 - 1 = 5 \) Putting it all together, we have: \[ A - B + C = 18x^2 + 4x + 5 \] ### Final Answer Thus, the final expression is: \[ \boxed{18x^2 + 4x + 5} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MATCHING)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (ASSERTION AND REASON)|5 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL - 1)|35 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If A = x^(3), B = 4x^(2) + x -1, C = x +1 , then find (A -B) (A-C)

If A = 3x^2 - 4x + 1, B = 5x^2 + 3x - 8 and C = 4x^2 - 7x + 3 , then find: (i) (A + B) - C (ii) B+C -A (iii) A + B + C

If A = 4x^(3) -8x^(2), B = 7x^(3) -5x + 3 and C = 3x^(3) + x - 11 , then find 2A -3B + 4C

If A=2x^(3)-3x^(2)-4x+5, B=2x^(2)-x^(3)+1 and C=x^(2)+x+2 , then find the degree of A+2B-C.

Find x in terms of a , b and c : (a)/(x - a) + (b)/(x - b) = (2 c)/(x - c) , x - a , b , c

If A={x:x^(2)-5x+6=0},B={2,4},C={4,5} then find Axx(BnnC)