Home
Class 7
MATHS
The sun of 8x^(2)y^(2)z^(3), 12x^(2)z^(3...

The sun of `8x^(2)y^(2)z^(3), 12x^(2)z^(3)y^(2) " and " 15x^(2)y^(2)z^(3)` is

A

`24x^(3)y^(2)z^(3)`

B

`360x^(3)y^(4)z^(3)`

C

`180x^(3)y^(3)z^(3)`

D

`35x^(2)y^(2)z^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the algebraic expressions \(8x^2y^2z^3\), \(12x^2z^3y^2\), and \(15x^2y^2z^3\), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Terms**: The given terms are: - \(8x^2y^2z^3\) - \(12x^2z^3y^2\) (which can be rearranged to \(12x^2y^2z^3\) since multiplication is commutative) - \(15x^2y^2z^3\) 2. **Combine Like Terms**: Since all three terms are like terms (they have the same variables with the same exponents), we can combine them by adding their coefficients: \[ 8 + 12 + 15 \] 3. **Calculate the Sum of Coefficients**: - First, add \(8\) and \(12\): \[ 8 + 12 = 20 \] - Next, add \(20\) and \(15\): \[ 20 + 15 = 35 \] 4. **Write the Final Expression**: Now, we can write the final expression by combining the sum of the coefficients with the common variable part: \[ 35x^2y^2z^3 \] ### Final Answer: The sum of the expressions is \(35x^2y^2z^3\).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MATCHING)|2 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (ASSERTION AND REASON)|5 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL - 1)|35 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

The LCM of 12x^(2)y^(3)z^(2) and 18x^(4)y^(2)z^(3) is

Find ((x^(2)-y^(2))^(3) + (y^(2) -z^(2))^(3)+ (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

The value of the expression ((x ^(2) - y ^(2)) ^(3) + ( y ^(2) - z ^(2)) ^(3) + (z ^(2) - x ^(2)) ^(3))/((x - y) ^(3) + ( y - z) ^(3) + (z - x ) ^(3)) is

Simplify: (15x^(5)y^(-2)z^(4))/(5x^(3)y^(-3)z^(2))

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)