Home
Class 7
MATHS
Simplify: 7^(2)xx2^(2)...

Simplify: `7^(2)xx2^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 7^2 \times 2^2 \), we can follow these steps: ### Step 1: Write the expression with expanded powers We start by expanding the powers: \[ 7^2 = 7 \times 7 \] \[ 2^2 = 2 \times 2 \] ### Step 2: Substitute the expanded forms into the expression Now, we substitute the expanded forms back into the expression: \[ 7^2 \times 2^2 = (7 \times 7) \times (2 \times 2) \] ### Step 3: Calculate the value of \( 7 \times 7 \) Next, we calculate \( 7 \times 7 \): \[ 7 \times 7 = 49 \] ### Step 4: Calculate the value of \( 2 \times 2 \) Now, we calculate \( 2 \times 2 \): \[ 2 \times 2 = 4 \] ### Step 5: Multiply the results from Step 3 and Step 4 Now we multiply the results from the previous steps: \[ 49 \times 4 \] ### Step 6: Calculate \( 49 \times 4 \) To find \( 49 \times 4 \): \[ 49 \times 4 = 196 \] ### Final Result Thus, the simplified value of \( 7^2 \times 2^2 \) is: \[ \boxed{196} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise SOLVED EXAMPLES|19 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 12.1)|37 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

Simplify : (8^(3a)xx2^(5)xx2^(2a))/(4xx2^(11a)xx2^(-2a))

Simplify : 2^(4)xx3^2

Simplify : 7^(16)xx7^(5)xx((1)/(7))^(11)

Simplify (-2)^4xx2^5

Simplify: (-4)xx(-2)^4

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

Simplify: ((3^(5^2)xx7^3)/((27^3)xx7))

Simplify : (-3)^(2)xx(-5)^2