Home
Class 7
MATHS
If (9^(n)xx3^(5)xx(27)^3)/(3xx(81)^4)=27...

If `(9^(n)xx3^(5)xx(27)^3)/(3xx(81)^4)=27`, then the value of n is

A

0

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{9^n \times 3^5 \times (27)^3}{3 \times (81)^4} = 27, \] we will simplify and find the value of \( n \). ### Step 1: Rewrite all numbers as powers of 3 First, we rewrite all the numbers in the equation using base 3: - \( 9 = 3^2 \) - \( 27 = 3^3 \) - \( 81 = 3^4 \) So we can rewrite the expression: \[ 9^n = (3^2)^n = 3^{2n}, \] \[ 27^3 = (3^3)^3 = 3^9, \] \[ 81^4 = (3^4)^4 = 3^{16}. \] Now substituting these into the equation gives: \[ \frac{3^{2n} \times 3^5 \times 3^9}{3 \times 3^{16}} = 27. \] ### Step 2: Simplify the left side Combine the powers of 3 in the numerator: \[ 3^{2n + 5 + 9} = 3^{2n + 14}. \] The denominator simplifies to: \[ 3^{1 + 16} = 3^{17}. \] So the left side becomes: \[ \frac{3^{2n + 14}}{3^{17}} = 3^{(2n + 14) - 17} = 3^{2n - 3}. \] ### Step 3: Set the equation Now we have: \[ 3^{2n - 3} = 27. \] Since \( 27 = 3^3 \), we can rewrite the equation as: \[ 3^{2n - 3} = 3^3. \] ### Step 4: Equate the exponents Since the bases are the same, we can equate the exponents: \[ 2n - 3 = 3. \] ### Step 5: Solve for \( n \) Now, solve for \( n \): \[ 2n = 3 + 3, \] \[ 2n = 6, \] \[ n = \frac{6}{2} = 3. \] ### Final Answer The value of \( n \) is \( 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL -II)|15 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MATCHING)|2 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 12.3)|21 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

If (9^(n)xx3^(5)xx27^(3))/(3xx(81)^(4))=27, then n equals

if (9^nxx3^2xx3^n-(27)^n)/((3^3)^5xx2^3)=1/(27), find the value of n

If (sqrt(3))^(5)xx9^(2)=3^(n)xx3sqrt(3), then the value of n is a.2 b.3 c.4d.5

If L=-lim_(ntooo) (2xx3^(2)xx2^(3)xx3^(4)...xx2^(n-1)xx3^(n))^((1)/((n^(2)+1))) , then the value of L^(4) is _____________.

If (sqrt(3))^(5) xx 81 = 3^(n) xx 3sqrt(3) then the value of n is

If 3^(6)xx9^(2)=3^(n)xx3^(2) , then value of n is

(5)/(9)xx(27)/(25)xx(5)/(3)=?

MTG IIT JEE FOUNDATION-EXPONENTS AND POWERS-EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL -I)
  1. (1000)^(7)div10^(18)=?

    Text Solution

    |

  2. If 3^(6)xx9^(2)=3^(n)xx3^(2), then value of n is

    Text Solution

    |

  3. If (9^(n)xx3^(5)xx(27)^3)/(3xx(81)^4)=27, then the value of n is

    Text Solution

    |

  4. If 5^a=3125 , then thevalue of 5^((a-3)) is 25 b. 125 c. 625 d. 1625

    Text Solution

    |

  5. If ((1)/((-7)^3)÷(1)/(7^8))div x=1, then the value of x is

    Text Solution

    |

  6. If 2^(2n-1)=1/(8^(n-3)), then the value of n is -2 b. 2 c. 0 d. 3

    Text Solution

    |

  7. (4^(5)xx3^5)/((12)^(5) xx9^2)=?

    Text Solution

    |

  8. Assuming that x is a positive real number and a ,\ b ,\ c are rational...

    Text Solution

    |

  9. Differentiate ((x^(a))/(x^(b)))^(a+b)*((x^(b))/(x^(c)))^(b+c)*((x^(c))...

    Text Solution

    |

  10. The value of (8^(-25)-8^(-26)) is 7xx8^(-25) b. 7xx8^(-26) c. 8xx8^(-...

    Text Solution

    |

  11. 49xx49xx49xx49=7^? 4 b. 7 c. 8 d. 16

    Text Solution

    |

  12. Number of prime factors is (6^(12)xx(35)^(28)xx(15)^(16))/((14)^(14)xx...

    Text Solution

    |

  13. If 5^((x+3))=25^((3x-4)), then the value of x is 5/(11) b. (11)/5 c. (...

    Text Solution

    |

  14. If 2^(n-1)+2^(n+1)=3, then n is equal to 0 b. 2 c. -2 d. -1

    Text Solution

    |

  15. If 3^(x)-3^(x-1)=18, then the value of x^x is

    Text Solution

    |

  16. By what number should ((2)/(3))^3 be divided so that the quotient is (...

    Text Solution

    |

  17. By what number should ((3)/(5))^2 be multiplied so that the product i...

    Text Solution

    |

  18. Find the value of x so that 5^(2x)xx5^(3)=5^6.

    Text Solution

    |

  19. Find the value of x, if (2^(x-1)*4^(2x+1))/(8^(x-1))=64.

    Text Solution

    |

  20. If 800xx(x^3)^(2)=8xx10^8, then x=

    Text Solution

    |