Home
Class 7
MATHS
Find the value of x, if (2^(x-1)*4^(2x+1...

Find the value of x, if `(2^(x-1)*4^(2x+1))/(8^(x-1))=64`.

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((2^{x-1} \cdot 4^{2x+1})/(8^{x-1}) = 64\), we will convert all terms to base 2 and then simplify. ### Step-by-Step Solution: 1. **Convert all numbers to base 2**: - We know that \(4 = 2^2\) and \(8 = 2^3\). - Therefore, we can rewrite the equation: \[ 4^{2x+1} = (2^2)^{2x+1} = 2^{2(2x+1)} = 2^{4x + 2} \] \[ 8^{x-1} = (2^3)^{x-1} = 2^{3(x-1)} = 2^{3x - 3} \] - The right side, \(64\), can be written as: \[ 64 = 2^6 \] 2. **Substituting back into the equation**: - Now substituting these back into the original equation gives us: \[ \frac{2^{x-1} \cdot 2^{4x + 2}}{2^{3x - 3}} = 2^6 \] 3. **Combine the exponents in the numerator**: - The numerator can be combined using the property of exponents: \[ 2^{(x-1) + (4x + 2)} = 2^{5x + 1} \] - So, the equation now looks like: \[ \frac{2^{5x + 1}}{2^{3x - 3}} = 2^6 \] 4. **Simplifying the left side**: - Using the property of exponents \(\frac{a^m}{a^n} = a^{m-n}\): \[ 2^{(5x + 1) - (3x - 3)} = 2^6 \] - Simplifying the exponent gives: \[ 2^{5x + 1 - 3x + 3} = 2^6 \] \[ 2^{2x + 4} = 2^6 \] 5. **Setting the exponents equal**: - Since the bases are the same, we can set the exponents equal to each other: \[ 2x + 4 = 6 \] 6. **Solving for \(x\)**: - Subtract 4 from both sides: \[ 2x = 2 \] - Divide by 2: \[ x = 1 \] ### Final Answer: The value of \(x\) is \(1\).
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL -II)|15 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MATCHING)|2 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT SECTION (EXERCISE 12.3)|21 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

Find the value of x if 2^(2x-1)=8^(x-3)

Find the value of x: 2^(2x+1) = 8

Find the value of x if 2^x -2^(x-1) = 4

Find the value of x if 2x+8/3=1/4x+5

Find the value of x so that (2^(-1)+4^(-1)+6^(-1)+8^(-1))^(x)=1

if x+(1)/(4x)=(3)/(2) find the value of 8x^(3)+(1)/(8x^(3))

If x^(2)+(1)/(x^(2))=6 then find the value of x^(4)+(1)/(x^(4))

Find the values of x for which f(x)=((2x-1)(x-1)^(2)(x-2)^(3))/((x-4)^(4))>0

find the value of x for which f(x) = ((2x-1)(x-1)^(2)(x-2)^(2))/((x-4)^(2))ge 0.

MTG IIT JEE FOUNDATION-EXPONENTS AND POWERS-EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL -I)
  1. Number of prime factors is (6^(12)xx(35)^(28)xx(15)^(16))/((14)^(14)xx...

    Text Solution

    |

  2. If 5^((x+3))=25^((3x-4)), then the value of x is 5/(11) b. (11)/5 c. (...

    Text Solution

    |

  3. If 2^(n-1)+2^(n+1)=3, then n is equal to 0 b. 2 c. -2 d. -1

    Text Solution

    |

  4. If 3^(x)-3^(x-1)=18, then the value of x^x is

    Text Solution

    |

  5. By what number should ((2)/(3))^3 be divided so that the quotient is (...

    Text Solution

    |

  6. By what number should ((3)/(5))^2 be multiplied so that the product i...

    Text Solution

    |

  7. Find the value of x so that 5^(2x)xx5^(3)=5^6.

    Text Solution

    |

  8. Find the value of x, if (2^(x-1)*4^(2x+1))/(8^(x-1))=64.

    Text Solution

    |

  9. If 800xx(x^3)^(2)=8xx10^8, then x=

    Text Solution

    |

  10. Express 32xx10000000 in standard form.

    Text Solution

    |

  11. Usual form of -4.8xx10^8 is

    Text Solution

    |

  12. Simplify : 7^(16)xx7^(5)xx((1)/(7))^(11)

    Text Solution

    |

  13. If [5^(9)xx5^(3)]div[5^(15)div5^(3)]=5^m, then find the value of m.

    Text Solution

    |

  14. If (x)/(y)=((2)/(3))^(3)div((3)/(2))^2, then the value of ((x)/(y))^3 ...

    Text Solution

    |

  15. Find the value of [{((-3)/(8))^2}^0]^(7).

    Text Solution

    |

  16. Find the value of (3^(0)xx4^(0)+2^(0)xx3^0)/(16^0).

    Text Solution

    |

  17. Find 'a' such that ((6)/(7))^(a)xx((6)/(7))^(3a)=(1296)/(2401).

    Text Solution

    |

  18. Find the value of t, if (9^(0)xx5^(0)xx7^0)/((-1)^(23)xx(-1)^5)=7^t.

    Text Solution

    |

  19. If x=((2)/(3))^(4)div((2)/(3))^2, find the value of x^5.

    Text Solution

    |

  20. What is the value of x, if 64xx(512)^(2)=x^8?

    Text Solution

    |