Home
Class 7
MATHS
Find the value of (3^(n)xx3^(2n+1))/(9^(...

Find the value of `(3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1))`.

A

`8`

B

`1`

C

`27`

D

`9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3^n \times 3^{2n+1}) / (9^n \times 3^{n-1})\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{3^n \times 3^{2n+1}}{9^n \times 3^{n-1}} \] ### Step 2: Substitute \(9\) with \(3^2\) Since \(9\) can be expressed as \(3^2\), we can rewrite \(9^n\) as \((3^2)^n\): \[ 9^n = (3^2)^n = 3^{2n} \] Now, substitute this back into the expression: \[ \frac{3^n \times 3^{2n+1}}{3^{2n} \times 3^{n-1}} \] ### Step 3: Simplify the numerator Using the property of exponents \(a^m \times a^n = a^{m+n}\), we can simplify the numerator: \[ 3^n \times 3^{2n+1} = 3^{n + (2n + 1)} = 3^{3n + 1} \] ### Step 4: Simplify the denominator Now simplify the denominator: \[ 3^{2n} \times 3^{n-1} = 3^{2n + (n - 1)} = 3^{3n - 1} \] ### Step 5: Combine the simplified numerator and denominator Now, we can rewrite the expression as: \[ \frac{3^{3n + 1}}{3^{3n - 1}} \] ### Step 6: Apply the quotient rule of exponents Using the property \(a^m / a^n = a^{m-n}\): \[ 3^{(3n + 1) - (3n - 1)} = 3^{3n + 1 - 3n + 1} = 3^{2} \] ### Step 7: Calculate the final value Now, we can calculate \(3^2\): \[ 3^2 = 9 \] Thus, the value of the expression \((3^n \times 3^{2n+1}) / (9^n \times 3^{n-1})\) is \(\boxed{9}\). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MATCHING)|2 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (ASSERTION AND REASON TYPE)|5 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL -I)|35 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

Find the value of (3^(12+n)xx9^(2n-7))/(3^(5n))

(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))

Fnd the value: ((243)^((n)/(5))3^(2n+1))/(9^(n)*3^(n-1))

The value of ((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1)) is: