Home
Class 7
MATHS
Find m, if ((3)/(7))^(9)div((3)/(7))^(5)...

Find m, if `((3)/(7))^(9)div((3)/(7))^(5)=((3)/(7))^((3m+2)/(m-2))`

A

`4`

B

`10`

C

`-4`

D

`15`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{3}{7}\right)^{9} \div \left(\frac{3}{7}\right)^{5} = \left(\frac{3}{7}\right)^{\frac{3m+2}{m-2}}\), we will follow these steps: ### Step 1: Apply the property of exponents Using the property of exponents that states \(a^m \div a^n = a^{m-n}\), we can simplify the left-hand side: \[ \left(\frac{3}{7}\right)^{9} \div \left(\frac{3}{7}\right)^{5} = \left(\frac{3}{7}\right)^{9-5} \] ### Step 2: Simplify the exponent Now, calculate \(9 - 5\): \[ 9 - 5 = 4 \] Thus, the equation becomes: \[ \left(\frac{3}{7}\right)^{4} = \left(\frac{3}{7}\right)^{\frac{3m+2}{m-2}} \] ### Step 3: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ 4 = \frac{3m + 2}{m - 2} \] ### Step 4: Cross-multiply To eliminate the fraction, we cross-multiply: \[ 4(m - 2) = 3m + 2 \] ### Step 5: Distribute on the left side Distributing \(4\) gives us: \[ 4m - 8 = 3m + 2 \] ### Step 6: Rearrange the equation Now, we will rearrange the equation to isolate \(m\): \[ 4m - 3m = 2 + 8 \] ### Step 7: Simplify This simplifies to: \[ m = 10 \] ### Final Answer The value of \(m\) is: \[ \boxed{10} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MATCHING)|2 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (ASSERTION AND REASON TYPE)|5 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (MULTIPLE CHOICE QUESTION) (LEVEL -I)|35 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

(7+m)^(3)

(3)/(7)xx(9)/(14) div (5)/(7)=?

Find (4)/(7) xx (14)/(3) div (2)/(3)

find the value of m, if (-3)^(m+1)*(-3)^(1)=(-3)^(7)

Find m so that (-3)^(m+1)xx(-3)^(5)=(-3)^(7)

(5)/(6)div(6)/(7)xx?-(8)/(9)div1(3)/(5)+(3)/(4)xx3(1)/(3)=2(7)/(9)

Find the value of (-4m)^(3) div (1)/((2m)^(2))