Home
Class 7
MATHS
Simplify : ((243)^(3)xx(243)^7)/(7^(5)xx...

Simplify : `((243)^(3)xx(243)^7)/(7^(5)xx(49)^(5)xx(343)^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{(243)^3 \times (243)^7}{7^5 \times (49)^5 \times (343)^2}\), we can follow these steps: ### Step 1: Simplify the Numerator First, we can combine the powers of \(243\) in the numerator: \[ (243)^3 \times (243)^7 = (243)^{3+7} = (243)^{10} \] ### Step 2: Factor \(243\) Next, we need to express \(243\) in terms of its prime factors. We know that: \[ 243 = 3^5 \] Thus, we can rewrite the numerator: \[ (243)^{10} = (3^5)^{10} = 3^{5 \times 10} = 3^{50} \] ### Step 3: Simplify the Denominator Now, let's simplify the denominator: \[ 7^5 \times (49)^5 \times (343)^2 \] We can factor \(49\) and \(343\) as follows: \[ 49 = 7^2 \quad \text{and} \quad 343 = 7^3 \] Now substituting these values in: \[ (49)^5 = (7^2)^5 = 7^{2 \times 5} = 7^{10} \] \[ (343)^2 = (7^3)^2 = 7^{3 \times 2} = 7^6 \] Combining these in the denominator: \[ 7^5 \times 7^{10} \times 7^6 = 7^{5 + 10 + 6} = 7^{21} \] ### Step 4: Combine the Results Now we can combine the results from the numerator and the denominator: \[ \frac{3^{50}}{7^{21}} \] ### Final Answer Thus, the simplified form of the expression is: \[ \frac{3^{50}}{7^{21}} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (LONG ANSWER TYPE)|5 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (VERY SHORT ANSWER TYPE)|10 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

Simplify : ((-2)^3 xx (-2)^7)/(3 xx (4)^6)

Simplify: ((2^5)^(2)xx7^3)/(8^(3)xx7)

Knowledge Check

  • The value of ((243)^(0.13)xx(243)^(0.07))/((7)^(0.25)xx(49)^(0.075)xx(343)^(0.2))

    A
    `(3)/(7)`
    B
    `(7)/(3)`
    C
    `1(3)/(7)`
    D
    `2(2)/(7)`
  • The value of ((243)^(0.13)xx(243)^(0.07))/((7)^(0.25)xx(49)^(0.075)xx(343)^(0.2)) is

    A
    `(3)/(7)`
    B
    `(7)/(3)`
    C
    `1(3)/(7)`
    D
    `2(2)/(7)`
  • Simplify : ((5)/(8))^(-7)xx((8)/(5))^(-5)

    A
    `(8)/(5)`
    B
    `(25)/(64)`
    C
    `(64)/(25)`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    The value of (243^(0.13)xx243^(0.07))/(7^(0.25)xx49^(0.07)xx343^(0.2)) is a.(3)/(7)b .(7)/(3)c*1(3)/(7)d.2(2)/(7) e.none of these

    Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

    Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

    Find the value of ((243)^(0.13) xx (243)^(0.07))/((7)^(0.25) xx (49)^(0.075) xx (343)^(0.2))

    Simplify : 7^(16)xx7^(5)xx((1)/(7))^(11)