Home
Class 7
MATHS
Simplify : (216)^(3)xx (2500)^(2)xx (300...

Simplify : `(216)^(3)xx (2500)^(2)xx (300)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( (216)^3 \times (2500)^2 \times (300) \), we will break it down step by step. ### Step 1: Factor each number into its prime factors. 1. **Factor 216**: - \( 216 = 2^3 \times 3^3 \) (since \( 216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \)) 2. **Factor 2500**: - \( 2500 = 5^4 \times 2^2 \) (since \( 2500 = 25 \times 100 = (5^2) \times (10^2) = (5^2) \times (2 \times 5)^2 = 5^4 \times 2^2 \)) 3. **Factor 300**: - \( 300 = 3^1 \times 5^2 \times 2^2 \) (since \( 300 = 3 \times 100 = 3 \times (10^2) = 3 \times (2 \times 5)^2 = 3^1 \times 5^2 \times 2^2 \)) ### Step 2: Rewrite the expression using the prime factorization. Now we can rewrite the original expression using these factorizations: \[ (216)^3 = (2^3 \times 3^3)^3 = 2^{3 \times 3} \times 3^{3 \times 3} = 2^9 \times 3^9 \] \[ (2500)^2 = (5^4 \times 2^2)^2 = 5^{4 \times 2} \times 2^{2 \times 2} = 5^8 \times 2^4 \] \[ 300 = 3^1 \times 5^2 \times 2^2 \] ### Step 3: Combine all the factors. Now we can combine all the factors: \[ (216)^3 \times (2500)^2 \times (300) = (2^9 \times 3^9) \times (5^8 \times 2^4) \times (3^1 \times 5^2 \times 2^2) \] ### Step 4: Group the same bases together. Now, we group the same bases: \[ = 2^{9 + 4 + 2} \times 3^{9 + 1} \times 5^{8 + 2} \] ### Step 5: Simplify the exponents. Now we simplify the exponents: \[ = 2^{15} \times 3^{10} \times 5^{10} \] ### Final Answer: Thus, the simplified form of the expression \( (216)^3 \times (2500)^2 \times (300) \) is: \[ 2^{15} \times 3^{10} \times 5^{10} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (LONG ANSWER TYPE)|5 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (VERY SHORT ANSWER TYPE)|10 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

Simplify : (-2)^(3)xx(-10)^3

Simplify : (-3)^(2)xx(-5)^2

Simplify : (-5)^(4) xx (-5)^(3)

Simplify : (3 xx 2)^4

Simplify: (1/3)^(-3) xx (3)^(-1) xx (1/9)

Simplify : 2^(4)xx3^2

Number of prime factor of (216)^(3//5)xx(2500)^(2//5)xx(300)^(1//5) is