Home
Class 7
MATHS
The value of (((243)^(5))^(4))/(((32)^(4...

The value of `(((243)^(5))^(4))/(((32)^(4))^(5))` is

A

`(3)/(2)`

B

`(3/2)^(100)`

C

`(1)/(2^(3)xx3^(3))`

D

`(1)/(2^(4)xx3^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{((243)^{5})^{4}}{((32)^{4})^{5}}\), we will follow these steps: ### Step 1: Simplify the Exponents Using the exponent rule \((a^m)^n = a^{m \cdot n}\), we can simplify the expression: \[ \frac{(243^{5 \cdot 4})}{(32^{4 \cdot 5})} = \frac{(243^{20})}{(32^{20})} \] ### Step 2: Rewrite the Base Numbers Next, we will express 243 and 32 as powers of their prime factors: - \(243 = 3^5\) (since \(3^5 = 243\)) - \(32 = 2^5\) (since \(2^5 = 32\)) Now we can substitute these values into our expression: \[ \frac{((3^5)^{20})}{((2^5)^{20})} \] ### Step 3: Apply the Exponent Rule Again Using the same exponent rule, we can simplify further: \[ \frac{3^{5 \cdot 20}}{2^{5 \cdot 20}} = \frac{3^{100}}{2^{100}} \] ### Step 4: Combine the Expression We can combine the expression using the property \(\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m\): \[ \frac{3^{100}}{2^{100}} = \left(\frac{3}{2}\right)^{100} \] ### Final Result Thus, the value of the original expression is: \[ \left(\frac{3}{2}\right)^{100} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

The value of ((243)/(32))^(-(4)/(5)) is

Find the value of : :((32)/(243))^((1)/(3))

Knowledge Check

  • Calculate the value of ((5^((1)/(4))-1)(5^((3)/(4))+5^((1)/(2))+5^((1)/(4))+1)

    A
    5
    B
    4
    C
    10
    D
    25
  • The value of (log_(4)32 + log_(9)243)

    A
    5
    B
    4
    C
    3
    D
    none of these
  • The value of (log_(4)32+log_(9)243) :

    A
    5
    B
    4
    C
    3
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of ((9^(2)xx18^(4))/(3^(16))) is a.(3)/(2) b.(4)/(9) c.(16)/(81) d.(32)/(243)

    The value of ((32)/(243))^(-4/5) is a.(4)/(9) b.(9)/(4) c.(16)/(81) d.(81)/(16)

    Simplify each of the following: ((243)/(32))^(-(4)/(5))(32)^(-3)5

    The value of (-5)+(-4)-(-4)-(-5)+(-5)+(-4)-(-5)+(-4) is

    Value of ((1024)/(243))^((3)/(5)) is _____