Home
Class 7
MATHS
The value of ((2/5)^(3)xx(1/7)^(3))/((2/...

The value of `((2/5)^(3)xx(1/7)^(3))/((2/5)^(2)xx(1/7)^(4))` is

A

`(2)/35`

B

`(5)/(14)`

C

`14(1)/(2)`

D

`2(4)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(2/5)^{3} \times (1/7)^{3}}{(2/5)^{2} \times (1/7)^{4}}\), we will follow these steps: ### Step-by-Step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ \frac{(2/5)^{3} \times (1/7)^{3}}{(2/5)^{2} \times (1/7)^{4}} \] 2. **Apply the Property of Exponents**: According to the property of exponents, \(\frac{a^m}{a^n} = a^{m-n}\). We can apply this property separately for \((2/5)\) and \((1/7)\): \[ = \left(\frac{2}{5}\right)^{3-2} \times \left(\frac{1}{7}\right)^{3-4} \] 3. **Simplify the Exponents**: Now, we simplify the exponents: \[ = \left(\frac{2}{5}\right)^{1} \times \left(\frac{1}{7}\right)^{-1} \] 4. **Rewrite the Negative Exponent**: Recall that \(a^{-n} = \frac{1}{a^n}\). Therefore, we can rewrite \(\left(\frac{1}{7}\right)^{-1}\) as: \[ = \left(\frac{2}{5}\right)^{1} \times 7^{1} \] 5. **Multiply the Terms**: Now, we can multiply the two fractions: \[ = \frac{2}{5} \times 7 = \frac{2 \times 7}{5} = \frac{14}{5} \] 6. **Convert to Mixed Fraction**: To convert \(\frac{14}{5}\) into a mixed fraction: - Divide 14 by 5, which gives 2 with a remainder of 4. - Thus, \(\frac{14}{5} = 2 \frac{4}{5}\). ### Final Answer: The value of the expression is: \[ 2 \frac{4}{5} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • DATA HANDLING

    MTG IIT JEE FOUNDATION|Exercise Olympiad / Hots Corner |20 Videos
  • FRACTIONS AND DECIMALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|13 Videos

Similar Questions

Explore conceptually related problems

Simplified value of ((4/7)^5xx(-2/3)^4)/((4/9)xx(4/7)^3)

The value of [5-(2/3+6/7)xx(1/6+1/3-1/2)]

The value of ((6^(-1)7^(2))/(6^(2)7^(-4)))^((7)/(2))xx((6^(-2)7^(3))/(6^(3)7^(-5)))^(-(5)/(2)) is

Find the value of 3(4)/(7)xx2(2)/(5)xx1(3)/(4)

The value of the product (2-(1)/(3))xx(2-(3)/(5))xx(2-(5)/(7))xx...xx(2-(2001)/(2003)) is

The value of (3)/(4) xx 2 (2)/(3) -: (5)/(9) " of " 1(1)/(5) + (2)/(23) xx 3 (5)/(6) -: (2)/(7) " of " 2(1)/(3) is :

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =