Home
Class 8
MATHS
Find the value of ((2)/(3))^(-4//5)....

Find the value of `((2)/(3))^(-4//5)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\left(\frac{2}{3}\right)^{-\frac{4}{5}}\), we can follow these steps: ### Step 1: Apply the Negative Exponent Rule The negative exponent rule states that \(x^{-y} = \frac{1}{x^y}\). Here, we have: \[ \left(\frac{2}{3}\right)^{-\frac{4}{5}} = \frac{1}{\left(\frac{2}{3}\right)^{\frac{4}{5}}} \] ### Step 2: Rewrite the Fraction We can rewrite the fraction \(\frac{2}{3}\) in the exponent: \[ \frac{1}{\left(\frac{2}{3}\right)^{\frac{4}{5}}} = \frac{1}{\left(\frac{2}{3}\right)^{\frac{4}{5}}} = \frac{1}{\left(\frac{2^4}{3^4}\right)^{\frac{1}{5}}} \] ### Step 3: Simplify the Exponent Now, we can simplify \(\left(\frac{2^4}{3^4}\right)^{\frac{1}{5}}\): \[ \left(\frac{2^4}{3^4}\right)^{\frac{1}{5}} = \frac{2^{\frac{4}{5}}}{3^{\frac{4}{5}}} \] ### Step 4: Substitute Back Now, substituting back, we have: \[ \frac{1}{\frac{2^{\frac{4}{5}}}{3^{\frac{4}{5}}}} = \frac{3^{\frac{4}{5}}}{2^{\frac{4}{5}}} \] ### Step 5: Final Result Thus, the final value of \(\left(\frac{2}{3}\right)^{-\frac{4}{5}}\) is: \[ \frac{3^{\frac{4}{5}}}{2^{\frac{4}{5}}} \] ### Summary The value of \(\left(\frac{2}{3}\right)^{-\frac{4}{5}}\) is \(\frac{3^{\frac{4}{5}}}{2^{\frac{4}{5}}}\). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Solved Examples|37 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.1)|20 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of : (a) ((-2)/(3))^(5)times((-3)/(2))^(3) (b) ((3)/(4))^(3)-((1)/(2))^(3)

Find the value of (1/3^5)^4

Find the value of 5/4 −2

Find the value of : ( 5(2)/(3) + 2(4)/(5) )

Find the value of : ( 5(2)/(3) + 2(4)/(5) )

b) Find the value of 2(2)/(3) + 5(1)/(4) -2(1)/(6)

Find the value of ( 2/5 )^-4 is :

1) Find the value of (4/5)^3÷(4/5)^2