Home
Class 8
MATHS
Simplify : (3^2)^3....

Simplify : `(3^2)^3`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((3^2)^3\), we can use the property of exponents that states \((a^m)^n = a^{m \cdot n}\). ### Step-by-Step Solution: 1. **Identify the Base and Exponents**: The base is \(3\), and the exponents are \(2\) and \(3\). 2. **Apply the Exponent Rule**: Using the property \((a^m)^n = a^{m \cdot n}\), we can rewrite the expression: \[ (3^2)^3 = 3^{2 \cdot 3} \] 3. **Calculate the New Exponent**: Now, calculate \(2 \cdot 3\): \[ 2 \cdot 3 = 6 \] So, we have: \[ (3^2)^3 = 3^6 \] 4. **Calculate \(3^6\)**: Now we need to evaluate \(3^6\). This can be calculated as: \[ 3^6 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \] 5. **Perform the Multiplication**: - First, calculate \(3 \times 3 = 9\). - Next, calculate \(9 \times 3 = 27\). - Then, calculate \(27 \times 3 = 81\). - Finally, calculate \(81 \times 3 = 243\). 6. **Final Result**: Therefore, \(3^6 = 729\). ### Final Answer: \[ (3^2)^3 = 729 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Solved Examples|37 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.1)|20 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Simplify: {(2/3)^2}^3x\ (1/3)^(-4)x\ 3^(-1)x\ 6^(-1)

Simplify : (-2)^(3)xx(-10)^3

Simplify : ((-2)^3 xx (-2)^7)/(3 xx (4)^6)

.Simplify: (3times2^(3))^(2)

.Simplify: (1^(3)+2^(3)+3^(3))^((1)/(2))

Simplify: (4/3^(-2))-(3/4)^(2(-2))

Simplify: (-3)xx(-2)^3 (ii) (-3)^2xx(-5)^2

Simplify: {(1/3)^(-3)-\ (1/2)^(-3)}-:(1/4)^(-3)