Home
Class 8
MATHS
Solve for y if (((1)/(9))^(2y-1) (0.0081...

Solve for `y` if `(((1)/(9))^(2y-1) (0.0081)^(1//2) )/( sqrt(243)) = ((1)/(3))^(2y -5) root(3) ((27^(y-1) )/(1000000) ).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\left(\frac{1}{9}\right)^{2y-1} (0.0081)^{\frac{1}{2}}}{\sqrt{243}} = \left(\frac{1}{3}\right)^{2y - 5} \sqrt{3} \cdot \frac{27^{y-1}}{1000000}, \] we will convert all numbers to powers of 3. ### Step 1: Rewrite the terms in powers of 3 1. **Convert \( \frac{1}{9} \)**: \[ \frac{1}{9} = 3^{-2} \] Therefore, \[ \left(\frac{1}{9}\right)^{2y-1} = (3^{-2})^{2y-1} = 3^{-2(2y-1)} = 3^{-4y + 2} \] 2. **Convert \( 0.0081 \)**: \[ 0.0081 = \frac{81}{10000} = \frac{3^4}{10^4} \implies (0.0081)^{\frac{1}{2}} = \left(\frac{3^4}{10^4}\right)^{\frac{1}{2}} = \frac{3^2}{10^2} = \frac{9}{100} \] 3. **Convert \( \sqrt{243} \)**: \[ 243 = 3^5 \implies \sqrt{243} = 3^{\frac{5}{2}} \] ### Step 2: Substitute back into the equation Now substituting these values back into the equation: \[ \frac{3^{-4y + 2} \cdot \frac{9}{100}}{3^{\frac{5}{2}}} = \left(\frac{1}{3}\right)^{2y - 5} \cdot \sqrt{3} \cdot \frac{27^{y-1}}{1000000} \] ### Step 3: Simplify the left side The left side becomes: \[ \frac{3^{-4y + 2} \cdot 9}{100 \cdot 3^{\frac{5}{2}}} = \frac{3^{-4y + 2} \cdot 3^2}{100 \cdot 3^{\frac{5}{2}}} = \frac{3^{-4y + 4 - \frac{5}{2}}}{100} = \frac{3^{-4y + \frac{3}{2}}}{100} \] ### Step 4: Simplify the right side Now simplifying the right side: 1. **Convert \( \left(\frac{1}{3}\right)^{2y - 5} \)**: \[ \left(\frac{1}{3}\right)^{2y - 5} = 3^{-(2y - 5)} = 3^{5 - 2y} \] 2. **Convert \( 27^{y-1} \)**: \[ 27 = 3^3 \implies 27^{y-1} = (3^3)^{y-1} = 3^{3(y-1)} = 3^{3y - 3} \] 3. **Combine**: \[ \sqrt{3} = 3^{\frac{1}{2}} \implies \sqrt{3} \cdot \frac{27^{y-1}}{1000000} = 3^{\frac{1}{2}} \cdot 3^{3y - 3} \cdot \frac{1}{1000000} \] 4. **Convert \( 1000000 \)**: \[ 1000000 = 10^6 = (2 \cdot 5)^6 = 2^6 \cdot 5^6 \] ### Step 5: Set the equation Now we have: \[ \frac{3^{-4y + \frac{3}{2}}}{100} = 3^{5 - 2y} \cdot 3^{3y - 3} \cdot \frac{1}{10^6} \] ### Step 6: Combine the right side Combining the right side: \[ 3^{5 - 2y + 3y - 3} \cdot \frac{1}{10^6} = 3^{y + 2} \cdot \frac{1}{10^6} \] ### Step 7: Equate powers of 3 Now equate the powers of 3: \[ -4y + \frac{3}{2} = y + 2 \] ### Step 8: Solve for \( y \) Rearranging gives: \[ -4y - y = 2 - \frac{3}{2} \implies -5y = \frac{1}{2} \implies y = -\frac{1}{10} \] ### Final Answer: Thus, the solution for \( y \) is: \[ y = -\frac{1}{10} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.1)|20 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type)|10 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Solve for x and y (3x-y)/(5)=2y-1, (3x)/(8)-(y)/(4)=(1)/(2)

Solve for x and y(3)/(x)+(2)/(y)=6 and (1)/(y)-(1)/(2x)=2

((y^(3)-3y^(2)+5y-1)/(y-1))

1/(x-3) + 1/(x+5) = 1/3 (y+2)(27-y)= 210

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Solve: (y-1)/(3)-(y-2)/(4)=1

Solve for x and y : 2/sqrt(x) + 3/sqrt(y) = 2 4/sqrt(x) + 9/sqrt(y) = -1

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

Solve for x and y : (1)/( 7x ) + ( 1) /( 6y) = 3, (1)/( 2x) - (1)/( 3y ) = 5 (x ne 0, y ne 0)

Solve the inequation 2 ^ ((1) / (cos ^ (2) x)) sqrt (y ^ (2) -y + (1) / (2)) <= 1

MTG IIT JEE FOUNDATION-EXPONENTS AND POWERS-Solved Examples
  1. Arrange in descending order of magnitude root(3)(2) , root(6)(3) , roo...

    Text Solution

    |

  2. Which is greater of the two : 2^(300) or 3^(200) ?

    Text Solution

    |

  3. Solve for y if (((1)/(9))^(2y-1) (0.0081)^(1//2) )/( sqrt(243)) = ((1)...

    Text Solution

    |

  4. By what number should ((1)/(2)) ^(-1) be multiplied so that the produc...

    Text Solution

    |

  5. Find the value of m for 5^(2m) div 5^(-1) = 5^(5).

    Text Solution

    |

  6. Simplify (i) <img class="eeimg trnoresize" alt="\left\{ {{{\lef...

    Text Solution

    |

  7. Simplify : ((-2)/(3))^(-2) xx ((4)/(5))^(-3)

    Text Solution

    |

  8. Simplify : ((3)/(4))^(-4) div ((3)/(2))^(-3)

    Text Solution

    |

  9. Simplify : ((3)/(7))^(-2) xx ((7)/(6))^(-3)

    Text Solution

    |

  10. Write the following numbers in standard form. 0.4579

    Text Solution

    |

  11. Write the following numbers in standard form. 0.000007

    Text Solution

    |

  12. Write the following numbers in standard form. 0.0000021

    Text Solution

    |

  13. Write the following numbers in standard form: 0. 4579 (ii) 0. 000007 ...

    Text Solution

    |

  14. Write the following numbers in standard form: 0. 4579 (ii) 0. 000007 ...

    Text Solution

    |

  15. Write the following numbers in standard form: 0. 4579 (ii) 0. 000007 ...

    Text Solution

    |

  16. Write the following numbers in usual form. 1.785 xx 10^(7)

    Text Solution

    |

  17. Write the following numbers in usual form. 5.1 xx 10^(-7)

    Text Solution

    |

  18. Solve 12^(x) = 144 and find the value of x.

    Text Solution

    |

  19. Evaluate : (13^(2) - 5^(2) )^(3/2)

    Text Solution

    |

  20. (1^(3)+2^(3)+3^(3)+4^(3))^(-3//2)=

    Text Solution

    |