Home
Class 8
MATHS
Simplify : ((3)/(7))^(-2) xx ((7)/(6))...

Simplify :
`((3)/(7))^(-2) xx ((7)/(6))^(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{3}{7}\right)^{-2} \times \left(\frac{7}{6}\right)^{-3}\), we can follow these steps: ### Step 1: Apply the property of negative exponents Recall that \(a^{-b} = \frac{1}{a^b}\). Therefore, we can rewrite the expression as: \[ \left(\frac{3}{7}\right)^{-2} = \frac{1}{\left(\frac{3}{7}\right)^{2}} \quad \text{and} \quad \left(\frac{7}{6}\right)^{-3} = \frac{1}{\left(\frac{7}{6}\right)^{3}} \] So, we have: \[ \left(\frac{3}{7}\right)^{-2} \times \left(\frac{7}{6}\right)^{-3} = \frac{1}{\left(\frac{3}{7}\right)^{2}} \times \frac{1}{\left(\frac{7}{6}\right)^{3}} = \frac{1}{\left(\frac{3}{7}\right)^{2} \times \left(\frac{7}{6}\right)^{3}} \] ### Step 2: Calculate the powers Now, we compute the powers: \[ \left(\frac{3}{7}\right)^{2} = \frac{3^2}{7^2} = \frac{9}{49} \] \[ \left(\frac{7}{6}\right)^{3} = \frac{7^3}{6^3} = \frac{343}{216} \] ### Step 3: Substitute back into the expression Now substituting these values back, we have: \[ \frac{1}{\left(\frac{3}{7}\right)^{2} \times \left(\frac{7}{6}\right)^{3}} = \frac{1}{\frac{9}{49} \times \frac{343}{216}} \] ### Step 4: Multiply the fractions To multiply the fractions, we multiply the numerators and the denominators: \[ \frac{9}{49} \times \frac{343}{216} = \frac{9 \times 343}{49 \times 216} \] ### Step 5: Simplify the expression Now we simplify: \[ \frac{9 \times 343}{49 \times 216} = \frac{3087}{10584} \] Next, we can simplify this fraction. Notice that \(49 = 7^2\) and \(343 = 7^3\), so: \[ \frac{9 \times 7^3}{7^2 \times 216} = \frac{9 \times 7}{216} = \frac{63}{216} \] Now we can simplify \(\frac{63}{216}\) by dividing both the numerator and denominator by 9: \[ \frac{63 \div 9}{216 \div 9} = \frac{7}{24} \] ### Step 6: Final Result Thus, the simplified expression is: \[ \frac{24}{7} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.1)|20 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Integer/Numerical Value Type)|10 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Simplify (3)/(7) +(-2)/(21)xx(-5)/(6)

Simplify : [ ((- 3 )/( 2) xx (4)/(5) ) + ((9)/(5) xx (-10)/( 3)) - ((1)/(2)xx (3)/(4)) ] div [ ((21)/( 9) xx (3)/(7)) +((7)/(8) xx (16)/(14)) ]

Simplify: 7(1)/(2)+3(1)/(3)

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

Simplify: 3/7+4/6

Simplify: 3/7+2/7

Simplify: 4((5)/(6))-2((3)/(8))+3((7)/(12))

Simplify: ((7)/(2)-:(5)/(2)xx(3)/(2))/((7)/(2)-:(5)/(2)backslash of(3)/(2))-:5.25

Simplify : 7^(16)xx7^(5)xx((1)/(7))^(11)

MTG IIT JEE FOUNDATION-EXPONENTS AND POWERS-Solved Examples
  1. Solve for y if (((1)/(9))^(2y-1) (0.0081)^(1//2) )/( sqrt(243)) = ((1)...

    Text Solution

    |

  2. By what number should ((1)/(2)) ^(-1) be multiplied so that the produc...

    Text Solution

    |

  3. Find the value of m for 5^(2m) div 5^(-1) = 5^(5).

    Text Solution

    |

  4. Simplify (i) <img class="eeimg trnoresize" alt="\left\{ {{{\lef...

    Text Solution

    |

  5. Simplify : ((-2)/(3))^(-2) xx ((4)/(5))^(-3)

    Text Solution

    |

  6. Simplify : ((3)/(4))^(-4) div ((3)/(2))^(-3)

    Text Solution

    |

  7. Simplify : ((3)/(7))^(-2) xx ((7)/(6))^(-3)

    Text Solution

    |

  8. Write the following numbers in standard form. 0.4579

    Text Solution

    |

  9. Write the following numbers in standard form. 0.000007

    Text Solution

    |

  10. Write the following numbers in standard form. 0.0000021

    Text Solution

    |

  11. Write the following numbers in standard form: 0. 4579 (ii) 0. 000007 ...

    Text Solution

    |

  12. Write the following numbers in standard form: 0. 4579 (ii) 0. 000007 ...

    Text Solution

    |

  13. Write the following numbers in standard form: 0. 4579 (ii) 0. 000007 ...

    Text Solution

    |

  14. Write the following numbers in usual form. 1.785 xx 10^(7)

    Text Solution

    |

  15. Write the following numbers in usual form. 5.1 xx 10^(-7)

    Text Solution

    |

  16. Solve 12^(x) = 144 and find the value of x.

    Text Solution

    |

  17. Evaluate : (13^(2) - 5^(2) )^(3/2)

    Text Solution

    |

  18. (1^(3)+2^(3)+3^(3)+4^(3))^(-3//2)=

    Text Solution

    |

  19. Solve each of the following exponential equations. 6^(x) = 216

    Text Solution

    |

  20. Solve each of the following exponential equations. 6^(x-4) = 1

    Text Solution

    |