Home
Class 8
MATHS
Evaluate : ((1)/(2))^(-5)....

Evaluate :
`((1)/(2))^(-5)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\left(\frac{1}{2}\right)^{-5}\), we can follow these steps: ### Step 1: Apply the property of exponents The property of exponents states that \(a^{-m} = \frac{1}{a^m}\). Therefore, we can rewrite \(\left(\frac{1}{2}\right)^{-5}\) as: \[ \left(\frac{1}{2}\right)^{-5} = \frac{1}{\left(\frac{1}{2}\right)^5} \] ### Step 2: Calculate \(\left(\frac{1}{2}\right)^5\) Now we need to calculate \(\left(\frac{1}{2}\right)^5\): \[ \left(\frac{1}{2}\right)^5 = \frac{1^5}{2^5} = \frac{1}{32} \] ### Step 3: Substitute back into the expression Now we substitute \(\left(\frac{1}{2}\right)^5\) back into our expression: \[ \left(\frac{1}{2}\right)^{-5} = \frac{1}{\left(\frac{1}{2}\right)^5} = \frac{1}{\frac{1}{32}} = 32 \] ### Final Answer Thus, the value of \(\left(\frac{1}{2}\right)^{-5}\) is: \[ \boxed{32} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 1|35 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Solved Examples|37 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : [ ( 1/3 )^2 ]^(-5 )

Evaluate int(1)/(x(2+x^(5)))dx

Evaluate: int_(0)^(1)(2x)/(5x^(2)+1)dx

Evaluate : 5^(6)times(1)/(5^(2))times(6^(2))/(1)times(1)/(3^(2)

Evaluate int (x+1)(2x-1)^(5/2)dx

Find the values of - (1/2)^-5

Evaluate int 1/(2x^2-5)dx

Evaluate : ( 2^(-1 ) + 3^(-1 ) + 5^(-1 ) )^( 0 ) is equal to

Evaluate: tan(2tan^(-1)((1)/(5)))