Home
Class 8
MATHS
Find the value of (2^(-1) xx 4^(-1) ) ...

Find the value of
`(2^(-1) xx 4^(-1) ) div 2^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (2^{-1} \times 4^{-1}) \div 2^{-2} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (2^{-1} \times 4^{-1}) \div 2^{-2} \] ### Step 2: Convert \(4^{-1}\) to base 2 Since \(4\) can be expressed as \(2^2\), we can rewrite \(4^{-1}\) as: \[ 4^{-1} = (2^2)^{-1} = 2^{-2} \] Now, substitute this back into the expression: \[ (2^{-1} \times 2^{-2}) \div 2^{-2} \] ### Step 3: Combine the powers of 2 in the numerator Using the property of exponents \(a^m \times a^n = a^{m+n}\), we can combine the powers in the numerator: \[ 2^{-1} \times 2^{-2} = 2^{-1 + (-2)} = 2^{-3} \] So now our expression looks like: \[ 2^{-3} \div 2^{-2} \] ### Step 4: Apply the division of powers Using the property of exponents \(a^m \div a^n = a^{m-n}\), we can simplify the expression: \[ 2^{-3} \div 2^{-2} = 2^{-3 - (-2)} = 2^{-3 + 2} = 2^{-1} \] ### Step 5: Convert back to a fraction Finally, we know that \(2^{-1}\) can be expressed as: \[ 2^{-1} = \frac{1}{2} \] ### Final Answer Thus, the value of the expression \( (2^{-1} \times 4^{-1}) \div 2^{-2} \) is: \[ \frac{1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 1|35 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Solved Examples|37 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of (2^(-1)xx4^(-1))divide 2^(-2)

Find the value of (2^(-1)+3^(-1))^(-1)div5^(-1)

Find the value of: (i) (2 ^(0) + 3 ^(-1)) xx 3 ^(2) (ii) (2 ^(-1)xx 3 ^(-1)) div 2 ^(-3) (iii) ((1)/(2)) ^(-2) + ((1)/(3)) ^(-2) + ((1)/(4)) ^(-2)

Find the value of (2^(20) div 2^(15)) xx 2^(3) .

Find the value of (2^(20) div2^(15)) xx 2^(3) .

Find the value of [ 8^(-4/3 ) div 2^-2 ]^(1/2)

Find the value of (-4m)^(3) div (1)/((2m)^(2))

Find the value of { ((1)/(3))^(-2) - ((1)/(2))^(-3) } div ((1)/(4))^(-2)

Find the value of 2div(1)/(2)-(1)/(2)div2+(1)/(2)(2+(1)/(2)) (A) 0 (B) 5 (C) 1/2 (D) 1