Home
Class 8
MATHS
Find the value of ((1)/(2))^(-2) + ((1...

Find the value of
`((1)/(2))^(-2) + ((1)/(3))^(-2) + ((1)/(4))^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2}\), we will use the property of exponents that states \(a^{-m} = \frac{1}{a^m}\) or equivalently \(\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}\). ### Step-by-step Solution: 1. **Rewrite each term using the property of negative exponents**: \[ \left(\frac{1}{2}\right)^{-2} = 2^2 \] \[ \left(\frac{1}{3}\right)^{-2} = 3^2 \] \[ \left(\frac{1}{4}\right)^{-2} = 4^2 \] 2. **Calculate each exponent**: \[ 2^2 = 4 \] \[ 3^2 = 9 \] \[ 4^2 = 16 \] 3. **Add the results together**: \[ 4 + 9 + 16 \] 4. **Perform the addition**: \[ 4 + 9 = 13 \] \[ 13 + 16 = 29 \] 5. **Final Result**: \[ \left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-2} = 29 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 1|35 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Solved Examples|37 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of { ((1)/(3))^(-2) - ((1)/(2))^(-3) } div ((1)/(4))^(-2)

Find the value of (( 1/4 )^3)^2

Find the value of ((2^(2))^((1)/(3)))^((1)/(4))

Find the Value of (1/3)^(-2)+(1/4)^(-2)+(1/5)^(-2)

Find the value of (1/2)^(-1)+(1/3)^(-1)+(1/4)^(-2)

Find the value of [ (1/4)^-2 + ( 1/3 )^-2 ] ÷ ( 1/5 )^-2 is

Find the value of 4-5/(1+1/(3+1/2))

Find the value of [ { ( 1/7^2 )^-2 }^(-1/3 ) ]^(-1/4 )

Find the value of (1-1/(2^(2)))(1-1/(3^(2)))(1-1/(4^(2)))(1-1/(5^(2)))…….(1-1/(9^(2)))(1-1/(10^(2)))