Home
Class 8
MATHS
Evaluate : (5^(-1) xx 2^(-1) ) xx 6^(-...

Evaluate :
`(5^(-1) xx 2^(-1) ) xx 6^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( (5^{-1} \times 2^{-1}) \times 6^{-1} \), we will follow these steps: ### Step 1: Rewrite the negative exponents We know that \( a^{-m} = \frac{1}{a^m} \). Therefore, we can rewrite each term with a negative exponent: \[ 5^{-1} = \frac{1}{5}, \quad 2^{-1} = \frac{1}{2}, \quad 6^{-1} = \frac{1}{6} \] ### Step 2: Substitute the rewritten terms into the expression Now we can substitute these values back into the expression: \[ (5^{-1} \times 2^{-1}) \times 6^{-1} = \left(\frac{1}{5} \times \frac{1}{2}\right) \times \frac{1}{6} \] ### Step 3: Multiply the fractions Now, we will multiply the fractions together: \[ \frac{1}{5} \times \frac{1}{2} = \frac{1 \times 1}{5 \times 2} = \frac{1}{10} \] Now, we multiply this result by \( \frac{1}{6} \): \[ \frac{1}{10} \times \frac{1}{6} = \frac{1 \times 1}{10 \times 6} = \frac{1}{60} \] ### Step 4: Final Result Thus, the value of the expression \( (5^{-1} \times 2^{-1}) \times 6^{-1} \) is: \[ \frac{1}{60} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 1|35 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Solved Examples|37 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate [(5 ^(-1) xx 3 ^(-1))^(-1)div 6 ^(-1)]

Evaluate : (- (-1) times (-5 ) ) / ( (-1 ) times ( -4 ))

Evaluate : (-1/2) times (-1/2 ) times ( -1/2 ) times (-1/2) times (-1/2 ) times ( -1/2 )

Evaluate (-1)/3 xx (1/2+1/4)xx((-1)/3 xx 1/2)+((-1)/3 xx 1/4)

Evaluate (i) (8^(-1)xx5^(3))/(2^(-4))( ii) (5^(-1)xx2^(-1))xx6^(-1)

Evaluate [((-2)/3)]^(-3)xx[1/4]^(-4) xx 3^(-1)xx1/6

Evaluate : ( -1 ) times ( -2 ) times ( -3 ) times (-4 ) times ( -5 )