Home
Class 8
MATHS
Evaluate: ((5)/(8))^(-7) xx ((8)/(5))^...

Evaluate:
`((5)/(8))^(-7) xx ((8)/(5))^(-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-4}\), we will follow these steps: ### Step 1: Apply the property of negative exponents We know that \(a^{-m} = \frac{1}{a^m}\). Therefore, we can rewrite the expression as: \[ \left(\frac{5}{8}\right)^{-7} = \frac{1}{\left(\frac{5}{8}\right)^{7}} \quad \text{and} \quad \left(\frac{8}{5}\right)^{-4} = \frac{1}{\left(\frac{8}{5}\right)^{4}} \] Thus, the expression becomes: \[ \frac{1}{\left(\frac{5}{8}\right)^{7}} \times \frac{1}{\left(\frac{8}{5}\right)^{4}} = \frac{1}{\left(\frac{5}{8}\right)^{7} \times \left(\frac{8}{5}\right)^{4}} \] ### Step 2: Rewrite the fractions with positive exponents Using the property \(\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}\), we can rewrite the terms: \[ \left(\frac{5}{8}\right)^{7} = \frac{5^{7}}{8^{7}} \quad \text{and} \quad \left(\frac{8}{5}\right)^{4} = \frac{8^{4}}{5^{4}} \] Thus, we have: \[ \frac{1}{\frac{5^{7}}{8^{7}} \times \frac{8^{4}}{5^{4}}} \] ### Step 3: Combine the fractions Now, we can combine the fractions: \[ \frac{1}{\frac{5^{7} \times 8^{4}}{8^{7} \times 5^{4}}} = \frac{8^{7} \times 5^{4}}{5^{7} \times 8^{4}} \] ### Step 4: Simplify the expression Using the property \(\frac{a^{m}}{a^{n}} = a^{m-n}\), we can simplify: \[ \frac{8^{7}}{8^{4}} \times \frac{5^{4}}{5^{7}} = 8^{7-4} \times 5^{4-7} = 8^{3} \times 5^{-3} \] ### Step 5: Rewrite with positive exponents This can be rewritten as: \[ \frac{8^{3}}{5^{3}} \] ### Step 6: Calculate the values Now, we calculate \(8^{3}\) and \(5^{3}\): \[ 8^{3} = 512 \quad \text{and} \quad 5^{3} = 125 \] Thus, we have: \[ \frac{512}{125} \] ### Final Answer The evaluated expression is: \[ \frac{512}{125} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 1|35 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Solved Examples|37 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate ((3)/(8))^(-2) xx ((4)/(5))^(-3).

Evaluate: (i) ((2)/(3))^(3) xx ((2)/(3)) ^(2)" "(ii)((4)/(7))^(7)xx ((4)/(7))^(-3)" "(iii) ((3)/(2))^(-3) " "(iv) ((8)/(5))^(-3) xx((8)/(5))^(2)

Evaluate {((1)/(3))^(-1)-((1)/(4))^(-1)}^(-1) (ii) ((5)/(8))^(-7)xx((8)/(5))^(-4)

Simplify ( i ) (((1)/(3))^(-2)-((1)/(2))^(-3)}-:((1)/(4))^(-2)*( ii) ((5)/(8))^(-7)xx((8)/(5))^(-5)

Evaluate: (5^(4)xx7^(4)xx2^(7))/(8xx49xx5^(3))

Find the value of "x" for which ((5)/(8))^(-2)times((5)/(8))^(-4)=((5)/(8))^(3x+3)

Evaluate: (i) (-3)/(5)xx(10)/(7)" "(ii) ((-5)/(8))^(-1)" "(iii) (-6)^(-1)