Home
Class 8
MATHS
((16)/(81))^((-3)/(4)) is equal to...

`((16)/(81))^((-3)/(4))` is equal to

A

`9/2`

B

`2/9`

C

`8/27`

D

`27/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{16}{81}\right)^{-\frac{3}{4}}\), we will follow these steps: ### Step 1: Factorize the numbers First, we need to factorize 16 and 81. - \(16 = 2^4\) - \(81 = 3^4\) ### Step 2: Rewrite the expression Now we can rewrite the expression using these factorizations: \[ \left(\frac{16}{81}\right)^{-\frac{3}{4}} = \left(\frac{2^4}{3^4}\right)^{-\frac{3}{4}} \] ### Step 3: Apply the exponent property Using the property of exponents \(\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}\), we can rewrite the expression as: \[ \frac{(2^4)^{-\frac{3}{4}}}{(3^4)^{-\frac{3}{4}}} \] ### Step 4: Simplify the exponents Now we simplify the exponents: \[ (2^4)^{-\frac{3}{4}} = 2^{4 \cdot -\frac{3}{4}} = 2^{-3} \] \[ (3^4)^{-\frac{3}{4}} = 3^{4 \cdot -\frac{3}{4}} = 3^{-3} \] ### Step 5: Rewrite the expression Now we can rewrite the expression: \[ \frac{2^{-3}}{3^{-3}} = \frac{1}{2^3} \div \frac{1}{3^3} = \frac{3^3}{2^3} \] ### Step 6: Calculate the final values Now we calculate \(3^3\) and \(2^3\): \[ 3^3 = 27 \quad \text{and} \quad 2^3 = 8 \] Thus, we have: \[ \frac{3^3}{2^3} = \frac{27}{8} \] ### Final Answer The value of \(\left(\frac{16}{81}\right)^{-\frac{3}{4}}\) is \(\frac{27}{8}\). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 2|15 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Match the Following)|3 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

-16-: (-4) is equal to

If 2a - (1)/(2a) = 3, then 16 a ^(4) + (1)/(16 a ^(4)) is equal to

The value of ((256x^(16))/(81y^(4)))^(-(1)/(4))' is

If log_(x)((9)/(16))=-(1)/(2), then x is equal to a.-(3)/(4) b.(3)/(4) c.(81)/(256)d.(256)/(81)

((81)/(16))^((-3)/(4))times((25)/(9))^((-3)/(2))

When ((81)/(16))^((-3)/(4)) xx {((9)/(25))^((5)/(2)) div ( (5)/(2))^(-3)} is simplified , we get .