Home
Class 8
MATHS
(32)^((-2)/(5) ) div (125) ^((-2)/(3) )=...

`(32)^((-2)/(5) ) div (125) ^((-2)/(3) )=`

A

`4/25`

B

`25/4`

C

`2/5`

D

`5/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((32)^{-\frac{2}{5}} \div (125)^{-\frac{2}{3}}\), we can follow these steps: ### Step 1: Rewrite the expression using positive exponents Using the property of exponents that states \(a^{-b} = \frac{1}{a^b}\), we can rewrite the expression: \[ (32)^{-\frac{2}{5}} = \frac{1}{(32)^{\frac{2}{5}}} \] \[ (125)^{-\frac{2}{3}} = \frac{1}{(125)^{\frac{2}{3}}} \] Thus, the expression becomes: \[ \frac{1}{(32)^{\frac{2}{5}}} \div \frac{1}{(125)^{\frac{2}{3}}} \] ### Step 2: Change division to multiplication Dividing by a fraction is equivalent to multiplying by its reciprocal. Therefore, we can rewrite the expression as: \[ \frac{1}{(32)^{\frac{2}{5}}} \times (125)^{\frac{2}{3}} \] ### Step 3: Combine the expression This can be rewritten as: \[ \frac{(125)^{\frac{2}{3}}}{(32)^{\frac{2}{5}}} \] ### Step 4: Simplify the bases Next, we can express \(32\) and \(125\) in terms of their prime factors: \[ 32 = 2^5 \quad \text{and} \quad 125 = 5^3 \] Now substituting these values into the expression gives: \[ \frac{(5^3)^{\frac{2}{3}}}{(2^5)^{\frac{2}{5}}} \] ### Step 5: Apply the power of a power property Using the property \((a^m)^n = a^{m \cdot n}\), we can simplify: \[ (5^3)^{\frac{2}{3}} = 5^{3 \cdot \frac{2}{3}} = 5^2 \] \[ (2^5)^{\frac{2}{5}} = 2^{5 \cdot \frac{2}{5}} = 2^2 \] Thus, the expression simplifies to: \[ \frac{5^2}{2^2} \] ### Step 6: Calculate the final values Now, we can calculate \(5^2\) and \(2^2\): \[ 5^2 = 25 \quad \text{and} \quad 2^2 = 4 \] So the expression becomes: \[ \frac{25}{4} \] ### Final Answer The final answer is: \[ \frac{25}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 2|15 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Match the Following)|3 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Find : quad (i)64^((1)/(2))quad (ii) 32^((1)/(5))quad (iii) 125^((1)/(3))

Prove that . (i) [8^(-(2)/(3)) xx 2^((1)/(2))xx 25^(-(5)/(4))] div[32^(-(2)/(5)) xx 125 ^(-(5)/(6)) ] = sqrt(2) (ii) ((64)/(125))^(-(2)/(3)) = (1)/(((256)/(625))^((1)/(4)))+ (sqrt(25))/(root3(64)) = (65)/(16) (iii) [7{(81)^((1)/(4)) +(256)^((1)/(4))}^((1)/(4))]^(4) = 16807 .

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :

Evaluate (i) (32)^((1)/(5)) +(-7)^(0) + (64)^((1)/(2)) (ii) (0.00032)^(-(2)/(3)) (iii) ((64)/(125))^(-(2)/(3)) .

The value ok ((1(1)/(9) xx 1 (1)/(20) div (21)/(38)-(1)/(3))div(2 (4)/(9)div 1(7)/(15) of ""(3)/(5)))/((1)/(5) of (1)/(5) div (1)/(125) - (1)/(125) div (1)/(5) of"" (1)/(5)) lies between......

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)