Home
Class 8
MATHS
((16)/(81))^(3//4) =...

`((16)/(81))^(3//4) =`

A

`9/2`

B

`2/9`

C

`8/27`

D

`27/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{16}{81}\right)^{\frac{3}{4}}\), we will follow these steps: ### Step 1: Rewrite the numbers in terms of their prime factors. - \(16\) can be expressed as \(2^4\) because \(16 = 2 \times 2 \times 2 \times 2\). - \(81\) can be expressed as \(3^4\) because \(81 = 3 \times 3 \times 3 \times 3\). Thus, we can rewrite the expression as: \[ \left(\frac{2^4}{3^4}\right)^{\frac{3}{4}} \] ### Step 2: Apply the power of a quotient rule. Using the rule \(\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}\), we can separate the expression: \[ \frac{(2^4)^{\frac{3}{4}}}{(3^4)^{\frac{3}{4}}} \] ### Step 3: Apply the power of a power rule. Using the rule \((a^m)^n = a^{m \cdot n}\), we can simplify both the numerator and the denominator: \[ \frac{2^{4 \cdot \frac{3}{4}}}{3^{4 \cdot \frac{3}{4}}} \] Calculating the exponents: - For the numerator: \(4 \cdot \frac{3}{4} = 3\) - For the denominator: \(4 \cdot \frac{3}{4} = 3\) So we have: \[ \frac{2^3}{3^3} \] ### Step 4: Calculate the powers. Now we can compute \(2^3\) and \(3^3\): - \(2^3 = 2 \times 2 \times 2 = 8\) - \(3^3 = 3 \times 3 \times 3 = 27\) Thus, we have: \[ \frac{8}{27} \] ### Final Answer: Therefore, \(\left(\frac{16}{81}\right)^{\frac{3}{4}} = \frac{8}{27}\). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 2|15 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Match the Following)|3 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate each of the following : (i)(32)^(1//5)" "(ii)(27)^(-1//3)" "(iii)((16)/(81))^(-1//4)

((81)/(16))^((-3)/(4))times((25)/(9))^((-3)/(2))

Simplify: ((81)/(16))^(-(3)/(4))x[((25)/(9))^(-(3)/(2))-:((5)/(2))^(-3)]

simplify :((81)/(16))^(-(3)/(4))xx[((25)/(9))^(-(3)/(2))-:((5)/(2))^(-3)

When ((81)/(16))^((-3)/(4)) xx {((9)/(25))^((5)/(2)) div ( (5)/(2))^(-3)} is simplified , we get .

{((216)/(64))^((2)/(3))*(((256)/(81))^(-(1)/(4)))/(((16)/(144))^(-(1)/(2)))}^((1)/(2))

(1) (4)/((216)^((2)/(3)))+(1)/((256)^((3)/(4)))+(2)/((243)^((1)/(5))) (ii) ((64)/(125))^((2)/(3))+((256)/(625))^((1)/(4))+((3)/(7))^(0) (iii) ((81)/(16))^((3)/(4))(((25)/(9))^((3)/(2))-:((5)/(2))^(-3)) (iv) ((25)^((5)/(2))times(729)^((1)/(3)))/((125)^((2)/(3))times(27)^((2)/(3))times8^((4)/(3)))