Home
Class 8
MATHS
8^(4//3) xx 2^(-1) =...

`8^(4//3) xx 2^(-1) =`

A

4

B

8

C

16

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 8^{\frac{4}{3}} \times 2^{-1} \), we can follow these steps: ### Step 1: Rewrite the base 8 in terms of base 2 We know that \( 8 = 2^3 \). Therefore, we can rewrite \( 8^{\frac{4}{3}} \) as: \[ (2^3)^{\frac{4}{3}} \] ### Step 2: Apply the power of a power rule Using the power of a power rule, which states that \( (a^m)^n = a^{m \cdot n} \), we can simplify: \[ (2^3)^{\frac{4}{3}} = 2^{3 \cdot \frac{4}{3}} = 2^4 \] ### Step 3: Substitute back into the expression Now we substitute \( 2^4 \) back into the original expression: \[ 2^4 \times 2^{-1} \] ### Step 4: Apply the product of powers rule Using the product of powers rule, which states that \( a^m \times a^n = a^{m+n} \), we can combine the exponents: \[ 2^4 \times 2^{-1} = 2^{4 + (-1)} = 2^{4 - 1} = 2^3 \] ### Step 5: Calculate the final value Now, we can calculate \( 2^3 \): \[ 2^3 = 8 \] Thus, the value of the expression \( 8^{\frac{4}{3}} \times 2^{-1} \) is \( 8 \). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 2|15 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Match the Following)|3 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

Simplify: (i) (2 ^(-1) xx 5 ^(-1)) ^(-1) div 4 ^(-1) (ii) (4 ^(-1)+ 8 ^(-1)) div ((2)/(3)) ^(-1)

Simplify (i) 3^((1)/(4)) xx 5^((1)/(4)) (ii) 2^((5)/(8)) xx 3^((5)/(8)) (iii) 6^((1)/(2)) xx 7^((1)/(2))

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

8^(2.4)xx2^(3.7)xx-(16)^(1.3)=2^(?)4.8b.5.7c3.2d.3.6e. none of these

Simplify : [ ((- 3 )/( 2) xx (4)/(5) ) + ((9)/(5) xx (-10)/( 3)) - ((1)/(2)xx (3)/(4)) ] div [ ((21)/( 9) xx (3)/(7)) +((7)/(8) xx (16)/(14)) ]