Home
Class 8
MATHS
Find the value of (27 xx t^(-4) )/( 3^(-...

Find the value of `(27 xx t^(-4) )/( 3^(-2) xx 18 xx t^(-8) ) ( t ne 0)`.

A

`(9)/(2) t^(4)`

B

`(27)/(2) t^(-4)`

C

`(27)/(2) t^(4)`

D

`(9)/(2) t^(-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \((27 t^{-4}) / (3^{-2} \times 18 \times t^{-8})\), we can simplify it step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \frac{27 t^{-4}}{3^{-2} \times 18 \times t^{-8}} \] ### Step 2: Simplify the denominator First, we can simplify the denominator: \[ 3^{-2} \times 18 = 3^{-2} \times (2 \times 9) = 3^{-2} \times (2 \times 3^2) = 2 \times 3^{2 - 2} = 2 \times 3^0 = 2 \] So, the expression now looks like: \[ \frac{27 t^{-4}}{2} \] ### Step 3: Simplify the powers of \( t \) Next, we simplify the powers of \( t \): \[ t^{-4} \div t^{-8} = t^{-4 - (-8)} = t^{-4 + 8} = t^{4} \] Thus, the expression becomes: \[ \frac{27 t^{4}}{2} \] ### Step 4: Final expression Now, we can write the final simplified expression: \[ \frac{27 t^{4}}{2} \] ### Conclusion The value of the expression \((27 t^{-4}) / (3^{-2} \times 18 \times t^{-8})\) is: \[ \frac{27 t^{4}}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Multiple Choice Questions) LEVEL - 2|15 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise Exercise (Match the Following)|3 Videos
  • EXPONENTS AND POWERS

    MTG IIT JEE FOUNDATION|Exercise NCERT Section (Exercise 12.2)|17 Videos
  • DIRECT AND INVERSE PROPORTIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|15 Videos
  • FACTORISATION

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos

Similar Questions

Explore conceptually related problems

Simplify.(i) (25xx t^(-4))/(5^(3)xx10xx t^(-8))(t!=0)( ii) (3^(-5)xx10^(-5)xx125)/(5^(-7)xx6^(-5))

An organic compound undergoes first decompoistion. The time taken for its decompoistion to 1//8 and 1//10 of its initial concentration are t_(1//8) and t_(1//10) , respectively. What is the value of ([t_(1//8)])/([t_(1//10)]) xx 10 ? (log_(10)2 = 0.3)

What ist he value of ( 3 . 6 xx 1 . 62 + 0.48 xx 3 . 6)/( 1.8 xx 0 . 8 + 10 . 8 xx 0 . 3 - 2 . 16 ) ?